The Resource Characteristics of Marine Gas Hydrates and the Assessment of its Exploitation Technology

Article Preview

Abstract:

Gas hydrate is a new energy in the 21st century with the characteristics of high energy density, huge amount of resources and cleaning. It has important significances for resources development, environmental protection and global climate changing. Due to the limitations of the occurrence mode and the technical level of marine gas hydrates, at present, the development and utilization of the resources are still tentative. This article analyzed and evaluated several key technologies to develop marine gas hydrates, that is depressurization, thermal methods, chemical injection method, CO2 replacement method, and fluorine gas+microwave method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6523-6529

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. David, W. Olivia, L. Sangyong, et al., Sediment surface effects on methane hydrate formation and dissociation, Marine Geology, vol. 198, Jun. 2003, pp.181-190.

DOI: 10.1016/s0025-3227(03)00100-2

Google Scholar

[2] R. Sassen, I. MacDonald, N. Guinasso, ed al., Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments, Geology; vol. 26, Sep, 1998, pp.851-854, doi: 10. 1130/0091-7613.

DOI: 10.1130/0091-7613(1998)026<0851:bmoisf>2.3.co;2

Google Scholar

[3] D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. Beijing: Chemical Industries Series, 2007, pp.1-79.

Google Scholar

[4] I. Lerche, Estimates of Worldwide Gas Hydrate Resources, Energy Exploration & Exploitation vol. 18, Aug. 2000, pp.329-337, doi: 10. 1260/0144598001492157.

DOI: 10.1260/0144598001492157

Google Scholar

[5] V. Gornitz, Potential distribution of methane hydrates in the world's oceans, Global Biogeochemical Cycles, vol. 8, Mar. 1994, pp.335-347, doi: 10. 1029/94GB00766.

DOI: 10.1029/94gb00766

Google Scholar

[6] R. McIver, Role of Naturally Occurring Gas Hydrates in Sediment Transport, American Association of Petroleum Geologists, vol. 66, Jun. 1982, pp.789-792.

DOI: 10.1306/03b5a318-16d1-11d7-8645000102c1865d

Google Scholar

[7] A. Soloviev, 2000. Global estimation of gas content in submarine gas hydrate accumulations. Proc. VI Int. Conf. on Gas in Marine Sediments. St. Petersburg, Russia, p.123–125.

Google Scholar

[8] D. Grauls, Gas hydrates: importance and applications in petroleum exploration,. Marine and Petroleum Geology, vol. 18, Apr. 2001, pp.519-523.

DOI: 10.1016/s0264-8172(00)00075-1

Google Scholar

[9] C. Yoann, A. Philippe and D. Christian, Storage and release of fossil organic carbon related to weathering of sedimentary rocks,. Earth and Planetary Science Letters, vol. 258, Jun. 2007, pp.345-357.

DOI: 10.1016/j.epsl.2007.03.048

Google Scholar

[10] K. Kvenvolden, A review of the geochemistry of methane in natural gas hydrate, Organic Geochemistry, vol. 23, Dec. 1995, pp.997-1008.

DOI: 10.1016/0146-6380(96)00002-2

Google Scholar

[11] M. John, J. Stephen, Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum, Earth and Planetary Science Letters, vol. 245, May 2006, pp.65-80.

DOI: 10.1016/j.epsl.2006.01.069

Google Scholar

[12] G. Samantha, S. Heather, B. Paulown, et al., Ocean acidification and surface water carbonate production across the Paleocene–Eocene thermal maximum, Earth and Planetary Science Letters, vol. 295, Jul. 2010, pp.583-592.

DOI: 10.1016/j.epsl.2010.04.044

Google Scholar

[13] K. Kunio, T. Kotaro, P. Maria, et al., Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene–Eocene thermal maximum, Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 237, Aug 2006, pp.456-464.

DOI: 10.1016/j.palaeo.2005.12.017

Google Scholar

[14] J. Higgins, P. Daniel, Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum, Earth and Planetary Science Letters, vol. 245, May 2006, pp.523-537.

DOI: 10.1016/j.epsl.2006.03.009

Google Scholar

[15] I. Lerche and E. Bagirov, Guide to gas hydrate stability in various geological settings, Marine and Petroleum Geology, vol. 15, Aug. 1998, pp.427-437.

DOI: 10.1016/s0264-8172(98)00013-0

Google Scholar

[16] A. Demirbas, Methane hydrates as potential energy resource: Part1– Importance, resource and recovery facilities, Energy Conversion and Management, vol. 51, Jul. 2010, pp.1547-1561.

DOI: 10.1016/j.enconman.2010.02.013

Google Scholar

[17] J. Mienert, M. Vanneste, S. Bünz, et al., Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide, Marine and Petroleum Geology, vol. 22, Feb. 2005, pp.233-244.

DOI: 10.1016/j.marpetgeo.2004.10.018

Google Scholar

[18] R. Hyndman and E. Davis, A mechanism for the formation of methane hydrate and sea floor bottom-simulating reflectors by vertical fluid expulsion: Vertical Fluid Expulsion, Journal of Geophysical Research, vol. 97, Dec. 1992, pp.7025-7041.

DOI: 10.1029/91jb03061

Google Scholar

[19] W. Borowski, C. Paull and W. Ussler, Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits, Marine Chemistry, vol. 57, July 1997, pp.299-311.

DOI: 10.1016/s0304-4203(97)00019-4

Google Scholar

[20] W. Borowski, A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America, Chemical Geology, vol. 205, May 2004, pp.311-346.

DOI: 10.1016/j.chemgeo.2003.12.022

Google Scholar

[21] S. Bünz, J. Mienert and C. Berndt, Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin, Earth and Planetary Science Letters, vol. 209, Apr. 2003, pp.291-307.

DOI: 10.1016/s0012-821x(03)00097-9

Google Scholar

[22] M. Lopez, Architecture and depositional pattern of the Quaternary deep-sea fan of the Amazon,. Marine and Petroleum Geology, vol. 18, Apr. 2001, pp.479-486.

DOI: 10.1016/s0264-8172(00)00071-4

Google Scholar

[23] A. Judge and J. Majorowicz, Geothermal conditions for gas hydrate stability in the Beaufort-Mackenzie area: the global change aspect, Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 98, Dec. 1992, pp.251-263.

DOI: 10.1016/0031-0182(92)90203-h

Google Scholar

[24] A. Ananthaswamy, Crocodiles in the Arctic Is carbon dioxide to blame? What causes climate change?, The New Scientist, vol. 206, Jun. 2010, pp.38-41.

DOI: 10.1016/s0262-4079(10)61563-1

Google Scholar

[25] B. Carson, M. Kastner, D. Bartlett, et al., Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B,. Marine Geology, vol. 198, Jun. 2003, pp.159-180.

DOI: 10.1016/s0025-3227(03)00099-9

Google Scholar

[26] P. Egeberg, G. Dickens, Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge), Chemical Geology, vol. 153, Jan. 1999, pp.53-79.

DOI: 10.1016/s0009-2541(98)00152-1

Google Scholar

[27] G. Dickens, The potential volume of oceanic methane hydrates with variable external conditions, Organic Geochemistry, vol. 32, Oct 2001, pp.1179-1193.

DOI: 10.1016/s0146-6380(01)00086-9

Google Scholar

[28] B. Beauchamp, Natural gas hydrates: myths, facts and issues, Comptes Rendus Geosciences, vol. 336, Jul. 2004, pp.751-765.

DOI: 10.1016/j.crte.2004.04.003

Google Scholar

[29] M. White and P. McGrail, Designing a pilot-scale experiment for the production of natural as hydrates and sequestration of CO2 in class 1 hydrate accumulations, Energy Procedia, vol. 1, Feb. 2009, pp.3099-3106.

DOI: 10.1016/j.egypro.2009.02.090

Google Scholar

[30] G. Moridis and E. Sloan, Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments, Energy Conversion and Management, vol. 48, Jun. 2007, pp.1834-1849.

DOI: 10.1016/j.enconman.2007.01.023

Google Scholar

[31] R. Garg, K. Ogra, A. Choudhary, et al., Chemical Recovery of Gas Hydrates Using Fluorine Gas and Microwave Technology, CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Jun. 2008, Calgary, Alberta, Canada. doi: 10. 2118/113556-MS.

DOI: 10.3997/2214-4609-pdb.148.spe113556

Google Scholar