Polymerization of Lactide Catalyzed by Diketiminato Iron (II) Alkoxide Complex

Article Preview

Abstract:

Lactide polymerization were carried out by using diketiminato iron (II) alkoxide complexes HC(C(CH3)N-2,6-iPr2C6H3)2FeOiPr as catalyst. The iron (II) alkoxide complex bearing bulky isopropyl ortho substituents showed moderate activity for the rac-lactide polymerization, and gave the polylactide (PLA) with high molecular weight. In the microstructures of polymers generated with the iron (II) catalyst, no stereoslective polymerization of rac-lactide has been detected. Results have shown that the conversion of lactide depend on the iron complex/monomer feed ratio and the reaction temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

1346-1349

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Nijenhuis, D. W. Grijpma and A. J. Pennings: Macromolecules Vol. 25 (1992), p.6419.

Google Scholar

[2] N. Spassky, M. Wisniewski, C. Pluta and A. LeBorgne: Macromol. Chem. Phys. Vol. 197 (1996), p.2627.

Google Scholar

[3] T. M. Ovitt and G. W. Coates: J. Polym. Sci., Part A: Polym. Chem. Vol. 38 (2000), p.4686.

Google Scholar

[4] T. M. Ovitt andG.W. Coates: J. Am. Chem. Soc. Vol. 124 (2002), p.1316.

Google Scholar

[5] Z. Zhong, P. J. Dijkstra and J. Feijen: Angew. Chem., Int. Ed. Vol. 41 (2002), p.4510.

Google Scholar

[6] Z. Zhong, P. J. Dijkstra and J. Feijen: J. Am. Chem. Soc. Vol. 125 (2003), p.11291.

Google Scholar

[7] M. H. Chisholm, N. J. Patmore and Z. P. Zhou: Chem. Commun. Vol. 5 (2005), p.127.

Google Scholar

[8] M. H. Chisholm, J. C. Gallucci, K. T. Quisenberry and Z. P. Zhou: Inorg. Chem. Vol. 47 (2008), p.2613.

Google Scholar

[9] Z. Tang, X. Chen, X. Pang, Y. Yang, X. Zhang and X. Jing: Biomacromolecules Vol. 5 (2004), p.965.

Google Scholar

[10] X. Pang, H. Du, X. Chen, X. Wang and X. Jing: Chem. –Eur. J. Vol. 14 (2008), p.3126.

Google Scholar

[11] M. Cheng, A. B. Attygalle, E. B. Lobkovsky and G. W. Coates: J. Am. Chem. Soc. Vol. 121 (1999), p.11583.

Google Scholar

[12] M. H. Chisholm, J. C. Huffman and K. Phomphrai: Dalton Trans. Vol. 1 (2001), p.222.

Google Scholar

[13] A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White and D. J. Williams: Chem. Commun. Vol. 1 ( 2001), p.283.

Google Scholar

[14] B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates: J. Am. Chem. Soc. Vol. 123 (2001), p.3229.

Google Scholar

[15] M. H. Chisholm, J. Gallucci and K. Phomphrai: Inorg. Chem. Vol. 41 (2002), p.2785.

Google Scholar

[16] M. H. Chisholm and K. Phomphrai: Inorg. Chim. Acta Vol. 350 (2003), p.121.

Google Scholar

[17] B. J. O'Keefe, L. E. Breyfogle, M. A. Hillmyer and W. B. Tolman: J. Am. Chem. Soc. Vol. 124 (2002), p.4384.

Google Scholar

[18] J. M. Smith, R. J. Lachicotte and P. L. Holland: Chem. Commun. Vol. 1 (2001), p.1542.

Google Scholar

[19] V. C. Gibson, E. L. Marshall, D. Navarro-Llobet, A. J. P. White and D. J. Williams: Dalton Trans. Vol. 2 (2002), p.4321.

Google Scholar