TiO2/Ti Electrode Preparation, Characterization and its Photoelectrocatalytic Stability

Article Preview

Abstract:

TiO2/Ti electrode, photoelectrocatalysis (PEC), rotating disk reactor, dye. Abstract: In this work, TiO2/Ti electrode was prepared by sol-gel method and its character was investigated by field emission scanning electron microscope (FESEM), X-ray reflection diffraction (XRD) spectra, UV-Vis diffuse reflection absorption spectra and photoelectro-response analysis. FESEM and XRD analysis demonstrates the TiO2 particles were uniform, about 50 nm and almost anatase, UV-Vis diffuse reflection analysis demonstrates the absoption fringe of TiO2 was 400 nm, and photoelectro-response analysis demonstrates the photoelectro-response capability of the photocatalyst was evident and decreased with the dye solution concenstrate increased. The results of stability and reproducibility of TiO2/Ti electrode demonstrates repetition of both multi-runs of mono-electrode and mono-run of multi-electrodes was excellent, which indicates TiO2/Ti electrode prepared by sol-gel method can degrade dye wastewater high-effectively and stably.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

1579-1582

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.J. Zhao, G.H. Zhao, P.Q. Li, et al: Chemosphere Vol. 80(2010), pp.410-415.

Google Scholar

[2] S.S. Shinde, C.H. Bhosale, K.Y. Rajpure: J. Photochem. Photobiol. B Vol. 103(2011), pp.111-117.

Google Scholar

[3] H.J. Liu, G.G. Liu, J. Fan, et al: Chemosphere Vol. 82(2011), pp.43-47.

Google Scholar

[4] X. Zhao, H.J. Liu, J.H. Qu: Applied Surface Science Vol. 257(2011), pp.4621-4624.

Google Scholar

[5] K.P. Xie, L. Sun, C.L. Wang, et al: Electrochimica Acta Vol. 55(2010), pp.7211-7218.

Google Scholar

[6] L. Michael, Hitchman, Fang Tina:J. Electroanal. Chem. Vol. 536-539(2002), pp.164-172.

Google Scholar

[7] K. Esquivel, F.J. Rodríguez, L.G. Arriaga, et al: J. Environ. Engin. Vol. 6(2011), pp.355-362.

Google Scholar

[8] Z. Zainal, C.Y. Lee, M.Z. Hussein, et al: J. Hazard. Mater. Vol. 146(2007), pp.73-80.

Google Scholar

[9] J.M. Kesselman, N.S. Lewis, M.R. Hoffmann: Environ. Sci. Technol. Vol. 31(1997), pp.2296-2302.

Google Scholar

[10] G. Waldner, M. Pourmodjib, R. Bauer, et al: Chemosphere Vol. 50(2003), pp.989-998.

Google Scholar

[11] Y.L. Xu, Y. He, X.D. Cao, et al: Environ. Sci. Technol. Vol. 42(2008), pp.2612-2617.

Google Scholar

[12] Y.B. Xie: Nanotechnology Vol. 17(2006), pp.3340-3346.

Google Scholar

[13] Y.B. Xie, C.W. Yuan: Appl. Catal. B Vol. 46(2003), pp.251-259.

Google Scholar