[1]
A. Routh and S. Sanderson in: Waterfowl, Handbook of Avian Medicine (Second Edition), pp.275-308, (2009).
DOI: 10.1016/b978-0-7020-2874-8.00012-2
Google Scholar
[2]
T.S. Sandhu and S.A. Metwally in: Duck virus enteritis (Duck Plague). (Diseases of poultry, eleventh Edition, Oxford, Blackwell Publishing, Singapore), pp.384-393, (2008).
Google Scholar
[3]
C.M. Fauquet, M.A. Mayo, J. Maniloff et al.: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, London: Academic Press, (2005).
Google Scholar
[4]
L.C. Zhao, A.C. Cheng, M.S. Wang et al.: Identification and Characterizeation of Duck Enteritis Virus dUTPase Gene. Avian Diseases . Ithaca, Vol. 52(2008), pp.324-331.
DOI: 10.1637/8169-110607-resnote.1
Google Scholar
[5]
R.Y. Jia, A.C. Cheng, M.S. Wang et al.: Studies on Ultrastructure of Duck Enteritis Virus chv Virulent Strain. Chinese J. Virol . Beijing, Vol. 23(2007), pp.202-206.
Google Scholar
[6]
H. Chang, A.C. Cheng, M.S. Wang et al.: Complete Nucleotide Sequence of the Duck Plague Virus gE Gene. Arch Virol. Wien, Vol. 154(2009), pp.163-165.
DOI: 10.1007/s00705-008-0284-6
Google Scholar
[7]
A.C. Cheng, M.S. Wang, M. Wen et al.: Construction of Duck Enteritis Virus Gene Libraries and Discovery, Cloning and Identification of Viral Nucleocapsid Protein Gene. High Technol. Lett. Beijing, Vol. (2006), pp.948-953.
Google Scholar
[8]
D. Romaker, V. Schregel, K. Maurer et al.: Analysis of the Structure-Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservationt. Journal of Medicinal Chemistry. Vol. 49(2006).
DOI: 10.1021/jm060696s
Google Scholar
[9]
M.S. Chee, G.L. Lawrence and B.G. Barrell: Alpha-, Beta- and Gammaherpesviruses Encode a Putative Phosphotransferase. Journal of General Virology. Vol. 70(1989), P. 1151-1160.
DOI: 10.1099/0022-1317-70-5-1151
Google Scholar
[10]
M. Tanaka, Y. Nishiyama, T. Sata et al.: The Role of Protein Kinase Activity Expressed by the UL13 Gene of Herpes Simplex Virus 1: The Activity Is Not Essential for Optimal Expression of UL41 and ICP0. Virology. Vol. 341(2005), P. 301-312.
DOI: 10.1016/j.virol.2005.07.010
Google Scholar
[11]
M.C. Long, V. Leong, P.A. Schaffer et al.: ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-induced Modification of the Large Subunit of RNA Polymerase II. Journal of Virology. Vol. 73(1999), P. 5593-5604.
DOI: 10.1128/jvi.73.7.5593-5604.1999
Google Scholar
[12]
F.C. Purves and B. Roizman: The UL13 Gene of Herpes Simplex Virus 1 Encodes the Functions for Posttranslational Processing Associated with Phosphorylation of the Regulatory Protein α22. Biochemistry. Vol. 89(1992), pp.7310-7314.
DOI: 10.1073/pnas.89.16.7310
Google Scholar
[13]
A.E. Reynolds, L. Li and J.D. Baines: Conformational Changes in the Nuclear Lamina Induced by Herpes Simplex Virus Type 1 Require Genes U(L)31 and U(L)34. Journal of Virology. Vol. 78(2004), pp.5564-5575.
DOI: 10.1128/jvi.78.11.5564-5575.2004
Google Scholar
[14]
G.L. Cano-Monreal, K.M. Wylie, F. Cao et al.: Herpes Simplex Virus 2 UL13 Protein Kinase Disrupts Nuclear Lamins. Virology. Vol. 392(2009), pp.137-147.
DOI: 10.1016/j.virol.2009.06.051
Google Scholar
[15]
S.J. Advani, R. Brandimarti, R.R. Weichselbaum et al.: The Disappearance of Cyclins A and B and the Increase in Activity of the G2/M-phase Cellular Kinase Cdc2 in Herpes Simplex Virus 1-infected Cells Require Expression of the α22/Us1. 5 and UL13 Viral Genes. Journal of Virology. Vol. 74(2000).
DOI: 10.1128/jvi.74.1.8-15.2000
Google Scholar
[16]
T.I. Ng, Y.E. Chang and B. Roizman: Infected Cell Protein 22 of Herpes Simplex Virus 1 Regulates the Expression of Virion Host Shutoff Gene UL41. Virology. Vol. 234(1997), pp.226-234.
DOI: 10.1006/viro.1997.8659
Google Scholar
[17]
E. Gershburg and J.S. Pagano: Conserved Herpesvirus Protein Kinases. Biochimica et Biophysica Acta. Vol. 1784(2008), P. 203-212.
DOI: 10.1016/j.bbapap.2007.08.009
Google Scholar
[18]
K. Arnold, L. Bordoli, J. Kopp et al.: The SWISS-MODEL Workspace: A Web-based Environment for Protein Structure Homology Modelling. Bioinformatics. Vol. 22(2006), pp.195-201.
DOI: 10.1093/bioinformatics/bti770
Google Scholar
[19]
T. Schwede, J. Kopp, N. Guex et al.: SWISS-MODEL: An Automated Protein Homology- modeling Server. Nucleic Acids Research. Vol. 31(2003), pp.3381-3385.
DOI: 10.1093/nar/gkg520
Google Scholar
[20]
N. Guex and M. C. Peitsch: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis. Vol. 18(1997), pp.2714-2723.
DOI: 10.1002/elps.1150181505
Google Scholar
[21]
T. Daikoku, S. Shibata, Goshima et al.: Purification and Characterization of the Protein Kinase Encoded by the UL13 Gene of Herpes Simplex Virus Type 2. Virology. Vol. 235(1997), P. 82-93.
DOI: 10.1006/viro.1997.8653
Google Scholar
[22]
J. Park, D. Lee, T. Seo et al.: Kaposi's Sarcoma-associated Herpesvirus (human herpesvirus-8) Open Reading Frame 36 Protein Is a Serine Protein Kinase. Journal of General Virology. Vol. 81(2000), pp.1067-1071.
DOI: 10.1099/0022-1317-81-4-1067
Google Scholar
[23]
T.I. Ng and C. Grose: Serine Protein Kinase Associated with Varicella-zoster Virus ORF 47. Virology. Vol. 191(1992), pp.9-18.
DOI: 10.1016/0042-6822(92)90161-h
Google Scholar
[24]
K.W. Jarosinski, N.G. Margulis, J.P. Kamil et al.: Horizontal Transmission of Marek. s Disease Virus Requires US2, the UL13 Protein Kinase, and gC. Journal of Virology. Vol. 81(2007), pp.10575-10587.
DOI: 10.1128/jvi.01065-07
Google Scholar
[25]
Z. He, Y.S. He, Y. Kim et al.: The Human Cytomegalovirus UL97 Protein Is a Protein Kinase That Autophosphorylates on Serines and Threonines. Journal of Virology. Vol. 71(1997), pp.405-411.
DOI: 10.1128/jvi.71.1.405-411.1997
Google Scholar
[26]
M.S. Walters, P.R. Kinchington, B.W. Banfield et al.: Hyperphosphorylation of Histone Deacetylase 2 by Alphaherpesvirus US3 Kinases. Journal of Virology. Vol. 84(2010), pp.9666-9676.
DOI: 10.1128/jvi.00981-10
Google Scholar
[27]
A. Ansari and V.C. Emery: The U69 Gene of Human Herpesvirus 6 Encodes a Protein Kinase Which Can Confer Ganciclovir Sensitivity to Baculoviruses. Journal of Virology. Vol. 73(1999), pp.3284-3291.
DOI: 10.1128/jvi.73.4.3284-3291.1999
Google Scholar
[28]
M.R. Chen, S.J. Chang, H. Huang et al.: A Protein Kinase Activity Associated with Epstein–Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D in Vitro. Journal of Virology. Vol. 74(2000), pp.3093-3104.
DOI: 10.1128/jvi.74.7.3093-3104.2000
Google Scholar
[29]
K. Sagou, T. Imai, H. Sagara et al.: Regulation of the Catalytic Activity of Herpes Simplex Virus 1 Protein Kinase Us3 by Autophosphorylation and Its Role in Pathogenesis. Journal of Virology. Vol. 83(2009), pp.5773-5783.
DOI: 10.1128/jvi.00103-09
Google Scholar
[30]
L.C. Zhao, A.C. Cheng, M.S. Wang et al.: Characterization of Codon Usage Bias in the dUTPase Gene of Duck Enteritis Virus. Progress in Natural Science. Vol. 18(2008), pp.1069-1076.
DOI: 10.1016/j.pnsc.2008.03.009
Google Scholar
[31]
M.S. Cai, A.C. Cheng, M.S. Wang et al.: Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene. Intervirology. Vol. 52(2009), pp.266-278.
DOI: 10.1159/000231992
Google Scholar
[32]
L.D. Liu, W.J. Wu, M. Hong et al.: Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 Genes of Herpesviridae. Virol Sin. China. Vol. 22(2007), pp.207-211.
DOI: 10.1007/s12250-007-0023-2
Google Scholar
[33]
P. Norberg, T. Bergstrom, E. Rekabdar et al.: Phylogenetic Analysis of Clinical Herpes Simplex Virus Type 1 Isolates Identified Three Genetic Groups and Recombinant Viruses. J Virol . Washington, Vol. 78(2004), pp.10755-10764.
DOI: 10.1128/jvi.78.19.10755-10764.2004
Google Scholar
[34]
T. Sun, A.C. Cheng, M.S. Wang et al.: Prediction of Epitopes on B Bell of UL6 Gene of Duck Enteritis Virus and Prokaryotic Expression of Major Antigen Determinant Sequence. Veterinary Science in China. Vol. 38(2008), pp.939-945.
Google Scholar
[35]
D.J. Barlow, M.S. Edwards and J.M. Thornton: Continuous and Discontinuous Protein Antigenic Determinants. Nature. Vol. 322(1986), pp.747-748.
DOI: 10.1038/322747a0
Google Scholar