Bioinformatics Analysis and Characteristics of Ser/Thr Protein Kinase Encoded by UL13 Gene of Duck Plague Virus

Article Preview

Abstract:

This report showed some physicochemical properties and structural features about DPV-UL13 protein predicted by some software and online tools. The online analysis of the physicochemical properties demonstrates that the protein has thirty-four potential phosphorylation sites when the threshold of prediction score is above 0.5 and both the signal peptide and the transmembrance region are not found. In addition, the protein has hydrophilic amine acid districts more than hydrophobic districts and subcellular localization largely locates at mitochondrial with 43.5%. The secondary structure results revealed that random coils dominated among secondary structure elements followed by alpha helix and extended strand. The phylogenetic tree shows that DPV-UL13 protein has close evolutionary relationship with the genus Mardivirus. And the multiple sequences alignment of UL13 protein in 156-436 sequence among DPV, HSV-1 and Mardivirus genus suggests highly conserved characteristic. These analysis surpports the guess that DPV-UL13 product may be a Ser/Thr protein kinase. All the data will be a basis for the further functional study of the DPV-UL13 protein.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

617-627

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Routh and S. Sanderson in: Waterfowl, Handbook of Avian Medicine (Second Edition), pp.275-308, (2009).

DOI: 10.1016/b978-0-7020-2874-8.00012-2

Google Scholar

[2] T.S. Sandhu and S.A. Metwally in: Duck virus enteritis (Duck Plague). (Diseases of poultry, eleventh Edition, Oxford, Blackwell Publishing, Singapore), pp.384-393, (2008).

Google Scholar

[3] C.M. Fauquet, M.A. Mayo, J. Maniloff et al.: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, London: Academic Press, (2005).

Google Scholar

[4] L.C. Zhao, A.C. Cheng, M.S. Wang et al.: Identification and Characterizeation of Duck Enteritis Virus dUTPase Gene. Avian Diseases . Ithaca, Vol. 52(2008), pp.324-331.

DOI: 10.1637/8169-110607-resnote.1

Google Scholar

[5] R.Y. Jia, A.C. Cheng, M.S. Wang et al.: Studies on Ultrastructure of Duck Enteritis Virus chv Virulent Strain. Chinese J. Virol . Beijing, Vol. 23(2007), pp.202-206.

Google Scholar

[6] H. Chang, A.C. Cheng, M.S. Wang et al.: Complete Nucleotide Sequence of the Duck Plague Virus gE Gene. Arch Virol. Wien, Vol. 154(2009), pp.163-165.

DOI: 10.1007/s00705-008-0284-6

Google Scholar

[7] A.C. Cheng, M.S. Wang, M. Wen et al.: Construction of Duck Enteritis Virus Gene Libraries and Discovery, Cloning and Identification of Viral Nucleocapsid Protein Gene. High Technol. Lett. Beijing, Vol. (2006), pp.948-953.

Google Scholar

[8] D. Romaker, V. Schregel, K. Maurer et al.: Analysis of the Structure-Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservationt. Journal of Medicinal Chemistry. Vol. 49(2006).

DOI: 10.1021/jm060696s

Google Scholar

[9] M.S. Chee, G.L. Lawrence and B.G. Barrell: Alpha-, Beta- and Gammaherpesviruses Encode a Putative Phosphotransferase. Journal of General Virology. Vol. 70(1989), P. 1151-1160.

DOI: 10.1099/0022-1317-70-5-1151

Google Scholar

[10] M. Tanaka, Y. Nishiyama, T. Sata et al.: The Role of Protein Kinase Activity Expressed by the UL13 Gene of Herpes Simplex Virus 1: The Activity Is Not Essential for Optimal Expression of UL41 and ICP0. Virology. Vol. 341(2005), P. 301-312.

DOI: 10.1016/j.virol.2005.07.010

Google Scholar

[11] M.C. Long, V. Leong, P.A. Schaffer et al.: ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-induced Modification of the Large Subunit of RNA Polymerase II. Journal of Virology. Vol. 73(1999), P. 5593-5604.

DOI: 10.1128/jvi.73.7.5593-5604.1999

Google Scholar

[12] F.C. Purves and B. Roizman: The UL13 Gene of Herpes Simplex Virus 1 Encodes the Functions for Posttranslational Processing Associated with Phosphorylation of the Regulatory Protein α22. Biochemistry. Vol. 89(1992), pp.7310-7314.

DOI: 10.1073/pnas.89.16.7310

Google Scholar

[13] A.E. Reynolds, L. Li and J.D. Baines: Conformational Changes in the Nuclear Lamina Induced by Herpes Simplex Virus Type 1 Require Genes U(L)31 and U(L)34. Journal of Virology. Vol. 78(2004), pp.5564-5575.

DOI: 10.1128/jvi.78.11.5564-5575.2004

Google Scholar

[14] G.L. Cano-Monreal, K.M. Wylie, F. Cao et al.: Herpes Simplex Virus 2 UL13 Protein Kinase Disrupts Nuclear Lamins. Virology. Vol. 392(2009), pp.137-147.

DOI: 10.1016/j.virol.2009.06.051

Google Scholar

[15] S.J. Advani, R. Brandimarti, R.R. Weichselbaum et al.: The Disappearance of Cyclins A and B and the Increase in Activity of the G2/M-phase Cellular Kinase Cdc2 in Herpes Simplex Virus 1-infected Cells Require Expression of the α22/Us1. 5 and UL13 Viral Genes. Journal of Virology. Vol. 74(2000).

DOI: 10.1128/jvi.74.1.8-15.2000

Google Scholar

[16] T.I. Ng, Y.E. Chang and B. Roizman: Infected Cell Protein 22 of Herpes Simplex Virus 1 Regulates the Expression of Virion Host Shutoff Gene UL41. Virology. Vol. 234(1997), pp.226-234.

DOI: 10.1006/viro.1997.8659

Google Scholar

[17] E. Gershburg and J.S. Pagano: Conserved Herpesvirus Protein Kinases. Biochimica et Biophysica Acta. Vol. 1784(2008), P. 203-212.

DOI: 10.1016/j.bbapap.2007.08.009

Google Scholar

[18] K. Arnold, L. Bordoli, J. Kopp et al.: The SWISS-MODEL Workspace: A Web-based Environment for Protein Structure Homology Modelling. Bioinformatics. Vol. 22(2006), pp.195-201.

DOI: 10.1093/bioinformatics/bti770

Google Scholar

[19] T. Schwede, J. Kopp, N. Guex et al.: SWISS-MODEL: An Automated Protein Homology- modeling Server. Nucleic Acids Research. Vol. 31(2003), pp.3381-3385.

DOI: 10.1093/nar/gkg520

Google Scholar

[20] N. Guex and M. C. Peitsch: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis. Vol. 18(1997), pp.2714-2723.

DOI: 10.1002/elps.1150181505

Google Scholar

[21] T. Daikoku, S. Shibata, Goshima et al.: Purification and Characterization of the Protein Kinase Encoded by the UL13 Gene of Herpes Simplex Virus Type 2. Virology. Vol. 235(1997), P. 82-93.

DOI: 10.1006/viro.1997.8653

Google Scholar

[22] J. Park, D. Lee, T. Seo et al.: Kaposi's Sarcoma-associated Herpesvirus (human herpesvirus-8) Open Reading Frame 36 Protein Is a Serine Protein Kinase. Journal of General Virology. Vol. 81(2000), pp.1067-1071.

DOI: 10.1099/0022-1317-81-4-1067

Google Scholar

[23] T.I. Ng and C. Grose: Serine Protein Kinase Associated with Varicella-zoster Virus ORF 47. Virology. Vol. 191(1992), pp.9-18.

DOI: 10.1016/0042-6822(92)90161-h

Google Scholar

[24] K.W. Jarosinski, N.G. Margulis, J.P. Kamil et al.: Horizontal Transmission of Marek. s Disease Virus Requires US2, the UL13 Protein Kinase, and gC. Journal of Virology. Vol. 81(2007), pp.10575-10587.

DOI: 10.1128/jvi.01065-07

Google Scholar

[25] Z. He, Y.S. He, Y. Kim et al.: The Human Cytomegalovirus UL97 Protein Is a Protein Kinase That Autophosphorylates on Serines and Threonines. Journal of Virology. Vol. 71(1997), pp.405-411.

DOI: 10.1128/jvi.71.1.405-411.1997

Google Scholar

[26] M.S. Walters, P.R. Kinchington, B.W. Banfield et al.: Hyperphosphorylation of Histone Deacetylase 2 by Alphaherpesvirus US3 Kinases. Journal of Virology. Vol. 84(2010), pp.9666-9676.

DOI: 10.1128/jvi.00981-10

Google Scholar

[27] A. Ansari and V.C. Emery: The U69 Gene of Human Herpesvirus 6 Encodes a Protein Kinase Which Can Confer Ganciclovir Sensitivity to Baculoviruses. Journal of Virology. Vol. 73(1999), pp.3284-3291.

DOI: 10.1128/jvi.73.4.3284-3291.1999

Google Scholar

[28] M.R. Chen, S.J. Chang, H. Huang et al.: A Protein Kinase Activity Associated with Epstein–Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D in Vitro. Journal of Virology. Vol. 74(2000), pp.3093-3104.

DOI: 10.1128/jvi.74.7.3093-3104.2000

Google Scholar

[29] K. Sagou, T. Imai, H. Sagara et al.: Regulation of the Catalytic Activity of Herpes Simplex Virus 1 Protein Kinase Us3 by Autophosphorylation and Its Role in Pathogenesis. Journal of Virology. Vol. 83(2009), pp.5773-5783.

DOI: 10.1128/jvi.00103-09

Google Scholar

[30] L.C. Zhao, A.C. Cheng, M.S. Wang et al.: Characterization of Codon Usage Bias in the dUTPase Gene of Duck Enteritis Virus. Progress in Natural Science. Vol. 18(2008), pp.1069-1076.

DOI: 10.1016/j.pnsc.2008.03.009

Google Scholar

[31] M.S. Cai, A.C. Cheng, M.S. Wang et al.: Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene. Intervirology. Vol. 52(2009), pp.266-278.

DOI: 10.1159/000231992

Google Scholar

[32] L.D. Liu, W.J. Wu, M. Hong et al.: Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 Genes of Herpesviridae. Virol Sin. China. Vol. 22(2007), pp.207-211.

DOI: 10.1007/s12250-007-0023-2

Google Scholar

[33] P. Norberg, T. Bergstrom, E. Rekabdar et al.: Phylogenetic Analysis of Clinical Herpes Simplex Virus Type 1 Isolates Identified Three Genetic Groups and Recombinant Viruses. J Virol . Washington, Vol. 78(2004), pp.10755-10764.

DOI: 10.1128/jvi.78.19.10755-10764.2004

Google Scholar

[34] T. Sun, A.C. Cheng, M.S. Wang et al.: Prediction of Epitopes on B Bell of UL6 Gene of Duck Enteritis Virus and Prokaryotic Expression of Major Antigen Determinant Sequence. Veterinary Science in China. Vol. 38(2008), pp.939-945.

Google Scholar

[35] D.J. Barlow, M.S. Edwards and J.M. Thornton: Continuous and Discontinuous Protein Antigenic Determinants. Nature. Vol. 322(1986), pp.747-748.

DOI: 10.1038/322747a0

Google Scholar