Gaseous and Electrochemical Hydrogen Storage Kinetics of as-Spun Nanocrystalline Mg20Ni10-xCux (x = 0-4) Alloys

Article Preview

Abstract:

In order to improve the gaseous and electrochemical hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted by element Cu. Melt-spinning technology was used for the preparation of the Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) hydrogen storage alloys. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The gaseous hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The results show that all the as-spun alloys hold an entire nanocrystalline structure and are free of amorphous phase. The substitution of Cu for Ni, instead of changing the major phase Mg2Ni, leads to a visible refinement of the grains of the as-cast alloys. Furthermore, both the melt spinning treatment and Cu substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

780-785

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Schlapbach and A. Züttel: Nature Vol. 414 (2001), p.353.

Google Scholar

[2] S.N. Kwon, S.H. Baek, D.R. Mummb, S.H. Hong, M.Y. Song: Int. J. Hydrogen Energy Vol. 33 (2008), p.4586.

Google Scholar

[3] P. Palade, S. Sartori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti: J. Alloys Compd. Vol. 415 (2006), p.170.

DOI: 10.1016/j.jallcom.2005.08.017

Google Scholar

[4] M.Y. Song, S.N. Kwon, J.S. Bae and S.H. Hong: Int. J. Hydrogen Energy Vol. 33 (2008), p.1711.

Google Scholar

[5] M. Savyak, S. Hirnyj, H. -D. Bauer, M. Uhlemann, J. Eckert, L. Schultz and A. Gebert: J. Alloys Compd. Vol. 364 (2004), p.229.

DOI: 10.1016/s0925-8388(03)00529-2

Google Scholar

[6] T. Spassov and U. Köster: J. Alloys Compd. Vol. 279 (1998), p.279.

Google Scholar

[7] J.H. Woo and K.S. Lee: J. Electrochem. Soc. Vol. 146(1999), p.819.

Google Scholar

[8] M.Y. Song, C.H.D. Yim, S.N. Kwon, J.S. Bae and S.H. Hong: Int. J. Hydrogen Energy Vol. 33(2008), p.87.

Google Scholar

[9] K. Tanaka, Y. Kanda, M. Furuhashi: J. Alloys Compd. Vol. 293–295(1999), p.521.

Google Scholar

[10] A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis and M. Jurczyk: J. Alloys Compd. Vol. 364(2004), p.283.

DOI: 10.1016/s0925-8388(03)00544-9

Google Scholar

[11] G. Zhong, B.N. Popov, R.E. White: J. Electrochem. Soc. Vol. 142 (1995), p.2695.

Google Scholar

[10] J.H. Woo and K.S. Lee: J. Electrochem. Soc. Vol. 146(1999), p.819.

Google Scholar