Different CaO Content Influence on Fusibility of Coal Ash

Article Preview

Abstract:

Selecting the Zichang coal as the sample coal, the chemical composition of the ash is analyzed with X-ray diffraction. The fusibility of coal ash temperature is measured for the ash with the different CaO content. The results shows that fusibility of coal ash drops with the increasing CaO content until it reaches 3.0%; then it increases with the increasing CaO content. We can explain this behavior by SiO2–Al2O3–CaO ternary phase diagram. The temperature of fusibility is lower when the additive amount reaches 3.0%~3.5% of coal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

1278-1282

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Lolja, H. Haxhi and Dh. Gjyli: Fuel, vol. 79 (2) (2000), pp.207-209

Google Scholar

[2] Hao Liu, Jiangrong Qiu, Hao Wu and Jun Li: Fuel, vol. 82(18) (2003), pp.2323-2329

Google Scholar

[3] Xiaojiang Wu, Zhongxiao Zhang, Yushuang Chen, Tuo Zhou, Junjie Fan, Guilin Piao, Nobusuke Kobayashi, Shigekatsu Mori and Yoshinori, Itaya: Fuel Processing Technology, vol. 91(11) (2010), pp.1591-1600

DOI: 10.1016/j.fuproc.2010.06.007

Google Scholar

[4] Liza Elliott, Shen Mao Wang, Terry Wall, Fred Novak, John Lucas, Harry Hurst, John Patterson and Jim Happ: Fuel Processing Technology, vol.56 (1-2) (1998), pp.45-53

DOI: 10.1016/s0378-3820(97)00083-0

Google Scholar

[5] Koichi Matsuoka, Yohsuke Suzuki, Kurt E. Eylands, Steven A. Benson and Akira Tomita: Fuel, vol. 85(17-18) (2006), p.2371–2376

DOI: 10.1016/j.fuel.2006.05.014

Google Scholar

[6] Alex Kondratiev and Evgueni Jak: Fuel, vol.80 (14) (2001), pp.1989-2000

Google Scholar

[7] Ling-xue KONG, Jin BAI, Wen LI, Zong-qing BAI and Zhen-xing GUO: Fuel, vol.39 (6) (2011), pp.407-411

Google Scholar

[8] Jun Cheng, Junhu Zhou, Jianzhong Liu, Xinyu Cao, Zhijun Zhou, Zhenyu Huang, Xiang Zhao and Kefa Cen: Powder Technology, vol. 146(3,8) (2004), pp.169-175

Google Scholar

[9] G. W. Bryant, G. J. Browning, H. Emanuel, S. K. Gupta, R. P. Gupta, J. A. Lucas, and T. F. Wall: Energy & Fuels, vol. 14(2) (2000), p.316–325

DOI: 10.1021/ef990093+

Google Scholar

[10] J.C. Van Dyk, S.A. Benson, M.L. Laumb, B. Waanders: fuel, vol. 88(6) (2009), pp.1057-1063

DOI: 10.1016/j.fuel.2008.11.034

Google Scholar

[11] Seggiani. M, Pannocchia.G: Ind. Eng. Chem. Res., vol. 42(20) (2003), p.4919–4926

Google Scholar

[12] J.-R. Qiu, F. Li,Y. Zheng, C.-G. Zheng, H. -C. Zhou: Fuel, vol.78 (8) (1999), p.963–969

Google Scholar

[13] Chungen Yin, Zhongyang Luo, Mingjiang Ni and Kefa Cen: Fuel, vol. 77(15) (1998), pp.1777-1782

Google Scholar

[14] Wenjia Song, Lihua Tang, Xuedong Zhu, Yongqiang Wu, Yongqiao Rong, Zibin Zhu, Shuntarou Koyama: Fuel, vol. 88(2) (2009), p.297–304

Google Scholar

[15] Evgueni Jak: Fuel, vol. 81(13) (2002), pp.1655-1668

Google Scholar