ZnO/ZnO-Bi2O3 Nanocomposite as an Anode Material for Ni-Zn Rechargeable Battery

Article Preview

Abstract:

A novel ZnO/ZnO-Bi2O3 nanocomposite was prepared by a homogeneous precipitation method. The nucleation sites, namely ZnO-Bi2O3 particles with nominal chemical composition of (ZnO)0.94(Bi2O3)0.06, were prepared by ball milling and subsequent annealing treatment. The as-synthesized materials were characterized by XRD, SEM and electrochemical measurements. Compared with single ZnO, the ZnO/ZnO-Bi2O3 nanocomposite show better cycling stability and higher discharge capacity. When the content of ZnO-Bi2O3 was 15 wt.%, the discharge capacity of ZnO/ZnO-Bi2O3 nanocomposite hardly declined over 60 cycling test, the average discharge capacity reached 590.2 mAh g−1. Cyclic voltammograms clearly illuminated that the added ZnO-Bi2O3 particles could decrease electrode polarization, maintain the electrochemical activity, and enhance the discharge capacity of ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

1725-1729

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.R. McLarnon, E.J. Cairns: J. Electrochem. Soc. Vol.138 (1991), p.2572

Google Scholar

[2] R.E.F. Einerhand, W. Visscher: J. Electrochem. Soc. Vol.138 (1991), p.1

Google Scholar

[3] L. Zhang, H. Huang, W.K. Zhang, Y.P. Gan: Electrochim. Acta. Vol.53 (2008), p.5386

Google Scholar

[4] L. Zhang, H. Huang, W.K. Zhang, Y.P. Gan: J. Power Sources. Vol.184 (2008), p.663

Google Scholar

[5] Y.F Yuan, L.Q. Yu, H.M. Wu, J.L. Yang, Y.B. Chen, S.Y. Guo, J.P.Tu: Electrochim. Acta. Vol.56 (2011), p.4378

Google Scholar

[6] J.X. Yu, H. Yang, X.P. Ai, X.M. Zhu: J. Power Sources. Vol.103 (2001), p.93

Google Scholar

[7] C.C. Yang, W.C. Chien, P.W. Chen, C.Y. Wu: J. Appl. Electrochem. Vol.29 (2009), p.39

Google Scholar

[8] S.W. Wang, Z.H. Yang, L.H. Zeng: Mater. Chem. Phys. Vol. 112 (2008), p.603

Google Scholar

[9] C.J. Lan, C.Y. Lee, T.S. Chin: Electrochim. Acta. Vol.52 (2007),p.5407

Google Scholar

[10] C.W. Lee, K. Sathiyanarayanan, S.W. Eom, H.S. Kim, M.S. Yun: J. Power Sources. Vol.159 (2006), p.1474

Google Scholar

[11] H. Lewis, P. Jackson, A. Salkind, T. Danko, R. Bell: J. Power Sources. Vol. 96 (2001), p.128

Google Scholar

[12] J. Jindra: J. Power Sources. Vol. 88 (2000), p.202

Google Scholar

[13] J. McBreen, E. Gannon: J. Power Sources. Vol. 15 (1985), p.169

Google Scholar

[14] Y.F Yuan, Y. Li, S. Tao, F.C. Ye, J.L. Yang, S.Y. Guo, J.P.Tu: Electrochim. Acta. Vol.54 (2009), p.6617

Google Scholar

[15] R. Shivkumar, G. Paruthimal Kalaignan, T. Vasudevan: J. Power Sources. Vol.55(1995), p.53

DOI: 10.1016/0378-7753(94)02170-8

Google Scholar

[16] Y.F Yuan, J.P. Tu, H.M. Wu, Y. Li and D.Q. Shi: J. Power Sources. Vol.159 (2006), p.357

Google Scholar

[17] J. McBreen, E. Gannon: Electrochim. Acta. Vol.26 (1981), p.1439

Google Scholar

[18] S.H. Lee, C.W. Yi, K. Kim: J. Phys. Chem. C Vol.115 (2011), p.2572

Google Scholar

[19] D.Q. Zeng, Z.H. Yang. S.W. Wang, X. Ni, D.J Ai: Electrochim. Acta. Vol.56 (2011), p.4075

Google Scholar