Maxwell-Stefan Equations Applied to the Modeling of Multi-Component Permeation through a Silicalite-1 Membrane

Article Preview

Abstract:

The component fluxes and separation factors of the two binary systems CO2/CH4 and n-butane/isobutane through a defect-free silicalite-1 membrane were measured and modeled by the generalized Maxwell-Stefan (GMS) equations. For a mixture of CO2 and CH4 through the zeolite membrane, the GMS equations in combination with the Ideal Adsorbed Solution (IAS) theory for the mixture adsorption appropriately describe the component fluxes. On the other hand, this model cannot predict the permeation behavior of a mixture of butane isomers. In the current study, the proposed model based on the GMS equations combined with the Binary Dual-site Langmuir (BDSL) for the adsorption of butane isomers on silicalite-1 successfully simulates the permeation fluxes and separation factors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

674-679

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Kapteijn, W. D. Zhu, J.A. Moulijn and T. Q. Gardner, in: Structured Catalysts and Reactors, edited by A. Cybulski and J.A. Moulijn, Chapter 20, Taylor & Francis Group (2006)

Google Scholar

[2] W. Zhu, F. Kapteijn and J.A. Moulijn: Sep. Purif. Technol. Vol. 32 (2003), p.223

Google Scholar

[3] W. Zhu, L. Gora, A.W.C. van den Berg, F. Kapteijn, J.C. Jansen and J.A. Moulijn: J. Membr. Sci. Vol. 253 (2005), p.57

Google Scholar

[4] W.D. Zhu, P. Hrabanek, L. Gora, F. Kapteijn and J.A. Moulijn: Ind. Eng. Chem. Res. Vol. 45 (2006), p.767

Google Scholar

[5] J. van den Bergh, W.D. Zhu, J.C. Groen, F. Kapteijn, J.A. Moulijn, K. Yajima, K. Nakayama, T. Tomita and S. Yoshida: Stud. Surf. Sci. Catal. Vol. 170 (2007), p.1021

Google Scholar

[6] W. Zhu, J.M. van de Graaf, L.J.P. van den Broeke, F. Kapteijn and J.A. Moulijn: Ind. Eng. Chem. Res. Vol. 37 (1998), p. (1934)

DOI: 10.1021/ie970739q

Google Scholar

[7] W. Zhu, F. Kapteijn and J.A. Moulijn: Adsorption Vol. 6 (2000), p.159

Google Scholar

[8] W. Zhu, F. Kapteijn and J.A. Moulijn: Phys. Chem. Chem. Phys. Vol. 2 (2000), p. (1989)

Google Scholar

[9] W. Zhu, F. Kapteijn and J.A. Moulijn: Micropor. Mesopor. Mater. Vol. 47 (2001), p.157

Google Scholar

[10] W. Zhu, F. Kapteijn, B. van der Linden and J.A. Moulijn: Phys. Chem. Chem. Phys. Vol. 3 (2001), p.1755

Google Scholar

[11] J.C. Groen, W.D. Zhu, S. Brouwer, S.J. Huynink, F. Kapteijn, J.A. Moulijn and J. Pérez-Ramírez: J. Am. Chem. Soc. Vol. 129 (2007), p.355

DOI: 10.1021/ja065737o

Google Scholar

[12] R. Krishna: Int. Commun. Heat Mass Transfer Vol. 28 (2001), p.337

Google Scholar

[13] A.L. Myers and J.M. Prausnitz: AIChE J. Vol. 11 (1965), p.121

Google Scholar

[14] A. van Miltenburg, W. Zhu, F. Kapteijn and J.A. Moulijn: Chem. Eng. Res. Des. Vol. 84(A5) (2006), p.350

Google Scholar

[15] T.J.H. Vlugt, W. Zhu, F. Kapteijn, J.A. Moulijn, B. Smit and R. Krishna: J. Am. Chem. Soc. Vol. 120 (1998), p.5599

Google Scholar