Characterization of Ru on Activated Carbon Catalysts Prepared by Supercritical Carbon Dioxide Impregnation

Article Preview

Abstract:

In this work, a novel method was reported for preparation of Ru/activated carbon (Ru/AC) catalysts. Supercritical carbon dioxide (SC CO2) was employed as medium for the impregnation of ACs with inorganometallic precursor of RuCl3. The Ru/AC catalysts displayed excellent activity for the catalytic hydrogenation of D-glucose. Selected Ru/AC catalysts were characterized by N2 adsorption-desorption, TPR and TEM analysis. The results show that the order of effects on catalytic activity are supercritical temperature > supercritical pressure > amount of co-solvent > time of impregnation. The optimal supercritical parameters for preparing Ru/AC catalyst were 313 K, 8 MPa, 4 ml of methanol and 9 h, respectively. The highest reaction rate of hydrogenation reached 86.35 mmol•min-1g-1Ru, upgrading 42.96% compared with the activity of conventional Ru/AC prepared using aqueous impregnation. The SC CO2 impregnation could result in Ru uniformly dispersed on the outer surface and in the pore of AC, leading Subscript textto higher dispersion of Ru and enhanced interaction between AC and Ru. Furthermore, the enhanced interaction induces improved reduce temperature. Consequently, the catalytic activity of Ru/AC catalysts is improved significantly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

734-738

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Schwarz, C. Contescu and A.Contescu: Chem. Rev.Vol.95 (1995), p.477

Google Scholar

[2] R. J. Farrauto, C. H. Bartholomew: Fundamentals of Industrial Catalytic Processes, 2nd Ed.; John Wiley & Sons: Hoboken, New Jersey,(2003), p.9

Google Scholar

[3] Y. Zhang, D. F. Kang, M. Aindow, C. Erkey: Phys. Chem. B Vol.109 (2005), p.2617

Google Scholar

[4] C. Erkey: J Supercrit. Fluids Vol.47 (2009),p.517

Google Scholar

[5] ) Y. Zhang, C. Erkey: Ind. Eng. Chem. Res. Vol.44 (2005), p.5312.

Google Scholar

[6] C. D. Saquing, D. Kang, M Aindow and C. Erkey: Microporous Mater. Vol.80 (2005), p.11

Google Scholar

[7] Y. H. Lin, X. L. Cui, C. Yen and C. M. Wai: J. Phys. Chem. B Vol.109 (2005), p.14410.

Google Scholar

[8] X. R. Ye, Y. H. Lin, C. M. Wang, M. H. Engelhard and C. M. Wai: J. Mater. Chem.Vol.14 (2004), p.908

Google Scholar

[9] C. D. Saquing, T. T. Cheng, M. Aindow, and C. Erkey: J. Phys. Chem.B Vol.108 (2004), p.7716

Google Scholar

[10] K. Jaehoon, M. Jason Kelly, H. Henry Lamb, W.R. George George and J.K. Douglas: J. Phys. Chem. C Vol.112 (2008),p.10446

Google Scholar

[11] B.Wong , S. Yoda and S. M. Howdle: J. Supercrit. Fluids Vol.42 (2007),p.282

Google Scholar

[12] A. D.Taylor, R. C. Sekol, J.M. Kizuka, S.D. Cunha and C. M. Comisar: J. Catal. Vol.259 (2008),p.5

Google Scholar

[13] Jianxia Jiao, Qun Xu , Limin Li: J Colloid Interface. Vol.316 (2007), p.596

Google Scholar

[14] J. Cervello, J. F. Garcia de la Banda,E. Hermana and J. F. Jimenez: Chem. Ing. Tech.Vol.48 (1976), p.20

Google Scholar

[15] B. Wong, S. Yoda and S.M. Howdle: J. Supercrit. Fluids Vol. 42 (2007),p.282

Google Scholar

[16] Q. Peng , J.C. Spagnola and G.N. Parsons: J. Electrochem.. Soc.Vol.155 (2008), p.580

Google Scholar

[17] B. W. Hoffer, E. Crezee, P. R. M. Mooijman, A .D. Langeveld , F. Kapteijn and J. A. Moulijn: Catal.Today Vol.79-80 (2003), p.35

DOI: 10.1016/s0920-5861(03)00040-3

Google Scholar

[18] K.V. Gorp, E.Boerman, C.V. Cavenaghi and P.H. Berben: Catal.Today Vol.52 (1999),p.349

Google Scholar

[19] G. Pierre, N. Nathalie, G. Flèche, P. Fuertes and A. Perrard: J Catal 180 (1998),p.51

Google Scholar

[20] B.Kusserow, S.Schimpf and P.Claus: Adv. Synth. Catal.Vol.345 (2003),p.289

Google Scholar

[21] A.D. Lucas, J.L. Valverde, P.CanizaresandL.Rodriguez:Appl.Catal.AVol.172 (1998),p.165

Google Scholar