[1]
N.E. Ermolin, "Interim (annual) Report on the Study of the Chemical Structure of ADN Flame", 1996.
Google Scholar
[2]
N.E. Ermolin, "Modeling of Pyrolysis of Ammonium Dinitramide SublimationProducts under Low-Pressure Conditions", Combustion, Explosion, and Shock Wave, Vol. 40, No. 1, 2004, pp.92-109.
DOI: 10.1023/b:cesw.0000013672.66809.32
Google Scholar
[3]
Y.C. Liau, V. Yang, M.C. Lin and J. Park, "Analysis of Ammonium Dinitramide (ADN) Combustion with Detailed Chemistry", 35th JANNAF Combustion Meeting, CPIA No. 685, 1998, pp.13-30.
Google Scholar
[4]
O.P. Korobeinichev, L.V. Kuibida, A.A. Paletsky and A.G. Schmakov, "Development and Application of Molecular Beam Mass-Spectrometry to the Study of ADN Combustion Chemistry," AIAA 36th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA-98-0445, 1998.
DOI: 10.2514/6.1998-445
Google Scholar
[5]
O.P. Korobeinichev, T.A. Bolshova and A.A. Paletsky, "Modeling the Chemical Reaction of Ammonium Dinitramide (ADN) in a Flame," Combustion and Flame, Vol. 126, 2001, pp.1516-1523.
DOI: 10.1016/s0010-2180(01)00269-3
Google Scholar
[6]
Matthew L. Gross, "Two-dimensional Modeling of AP/HTPB Utilizing a Vorticity Formulation and One-dimensional Modeling of AP and AND", Thesis for doctor, Department of Chemical Engineering, Brigham Young University, Provo, UT, 2007.
Google Scholar
[7]
N. Najm Habib, S. Wyckoff Peter, M. Omar Knio, "A Semi-implicit Numerical Scheme for Reacting Flow", Journal of Computational Physics, Vol. 143, pp.381-402.
DOI: 10.1006/jcph.1997.5856
Google Scholar
[8]
Stephen B. Pope and Zhuyin Ren, "Efficient Implement of Chemistry in Computational Combustion", Flow Turbulence Combust, Vol. 82, pp.437-453.
DOI: 10.1007/s10494-008-9145-3
Google Scholar
[9]
A.G. Shmakov, O.P. Korobeinichev and T.A. Bol'shova, "Thermal Decomposition of Ammonium Dinitramide Vapor in a Two-Temperature Flow Reactor", Combustion, Explosion, and Shock Waves, Vol. 38, No. 3, 2002, pp.284-294.
DOI: 10.1023/a:1015697618376
Google Scholar