Grain Refinement of Direct Chill Cast 7050 Aluminium Alloy with Low Frequency Electromagnetic Field

Article Preview

Abstract:

Low frequency electromagnetic casting (LFEC) process was used to make 7050 aluminum alloy 162mm ingots and study its effect on the as-cast microstructure. Effects of electromagnetic field parameters such as frequency and current intensity on microstructures were systemically investigated. The results showed that LFEC has a significant grain refining effect on 7050 alloy. The microstructures of LFEC ingot from the border to the center of the cross section are all equiaxed or nearly equiaxed grains which are much finer and more uniform than those of DC cast ingot. It was also found that electromagnetic field frequency and current intensity play important roles on the microstructure refinement. The discussion was mainly focused on the mechanism of grain refinement by LFEC process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

850-853

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. S. Murty, S. A. Kori, M. Chakraborty, Inter. Mater. Rev. 47 (2002) 3-29.

Google Scholar

[2] R. Nadella, D. G. Eskin, L. Katgerman, Metall. Mater. Trans. A 39 (2008) 450-461.

Google Scholar

[3] D. G. Eskin, Physical metallurgy of direct chill casting of aluminum alloys, CRC Press, Boca Raton 2008.

DOI: 10.1201/9781420062823

Google Scholar

[4] Y. N. Kwon, Y. S. Lee, J. H. Lee, Magnesium technology 2009, TMS, San Francisco, California, USA, 2009, pp.425-428.

Google Scholar

[5] P. S. Mohanty, J. E. Gruzleski, Acta Metallurgica Et Materialia 43 (1995) 2001-2012.

DOI: 10.1016/0956-7151(94)00405-7

Google Scholar

[6] X. Liu, Y. Osawa, S. Takamori, T. Mukai, Mater. Lett. 62 (2008) 2872-2875.

Google Scholar

[7] G. I. Eskin, Ultrasonics Sonochemistry 2 (1995) s137-141.

Google Scholar

[8] G. I. Eskin, G. S. Makarov, Y. P. Pimenov, Adv. Perform. Mater. 2 (1995) 43-50.

Google Scholar

[9] G. I. Eskin, Adv. Perform. Mater. 4 (1997) 223-232.

Google Scholar

[10] B. Zhang, J. Cui, G. Lu, Mater. Sci. Eng. A 355 (2003) 325-330.

Google Scholar

[11] J. Dong, Z. Zhao, J. Cui, F. Yu, C. Ban, Metall. Mater. Trans. A 35 (2004) 2487-2494.

Google Scholar

[12] K. Miwa, T. Tamura, M. Li, et al., Materials Science Forum 690 (2011) 162-165.

Google Scholar

[13] Z. N. Getselev, J. Met. 10 (1971) 38-43.

Google Scholar

[14] Y. B. Zuo, M. Xia, S. Liang, et al., Mater. Sci. Technol. 27 (2011) 101-107.

Google Scholar

[15] Y. B. Zuo, B. Jiang, Z. Fan, Materials Science Forum 690 (2011) 137-140.

Google Scholar

[16] M. C. Flemings, Solidification Processing, McGraw-Hill, NY, USA, 1974.

Google Scholar

[17] M. C. Flemings, Metall. Trans. A 22 (1991) 957-981.

Google Scholar

[18] Y. B. Zuo, H. Nagaumi, J. Z. Cui, J. Mater. Process. Technol. 197 (2008) 109-115.

Google Scholar

[19] Y. Zuo, J. Cui, J. Dong, F. Yu, Mater. Sci. Eng. A 408 (2005) 176-181.

Google Scholar