Traveling Wave Solution of (2+1) Dimensional Breaking Soliton Equation by Bernoulli Sub-ODE Method

Article Preview

Abstract:

In this paper, we derive exact traveling wave soluti-ons of (2+1) dimensional breaking soliton equation by a proposed Bernoulli sub-ODE method. The method appears to be efficient in seeking exact solutions of nonlinear equations. We also make a comparison between the present method and the known (G’/G) expansion method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

207-211

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199 (1995) 169-172.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, p.68–73.

DOI: 10.1016/0375-9601(95)00092-h

Google Scholar

[2] E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary, wave solutions for nonlinear Hirota-Satsuma coupled KdV equations, Chaos, Solitons and Fractals 22 (2004) 285-303.

DOI: 10.1016/j.chaos.2003.12.045

Google Scholar

[3] L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 278 (2001) 267-270.

DOI: 10.1016/s0375-9601(00)00778-7

Google Scholar

[4] E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysis. and mod-ified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221-234.

DOI: 10.1515/ijnsns.2004.5.3.221

Google Scholar

[5] M. Inc, D.J. Evans, on traveling wave solutions of some nonlinear evolution equations, Int. J. Comput. Math. 81 (2004) 191-202.

Google Scholar

[6] M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical models, Appl. Math. Comput. 190 (2007) 988-996.

DOI: 10.1016/j.amc.2007.01.070

Google Scholar

[7] Mingliang Wang, Xiangzheng Li, Jinliang Zhang, The (G'/G)-: expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372 (2008) 417-423.

DOI: 10.1016/j.physleta.2007.07.051

Google Scholar

[8] M.J. Ablowitz, P.A. Clarkson, Solitons, Non-linear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, (1991).

Google Scholar

[9] M.R. Miura, Backlund Transformation, Springer-Verlag, Berlin, (1978).

Google Scholar

[10] C. Rogers, W.F. Shadwick, Backlund Transformations, Academic Press, New York, (1982).

Google Scholar

[11] R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (1973) 805-810.

DOI: 10.1063/1.1666399

Google Scholar

[12] R. Hirota, J. Satsuma, Soliton solution of a coupled KdV equation, Phys. Lett. A 85 (1981) 407-408.

Google Scholar

[13] Z.Y. Yan, H.Q. Zhang, New explicit solitary wave solutions and peri-odic wave solutions for Whitham-Broer-Kaup equation in shallow w-ater, Phys. Lett. A 285 (2001) 355-362.

DOI: 10.1016/s0375-9601(01)00376-0

Google Scholar

[14] E.G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212-218.

DOI: 10.1016/s0375-9601(00)00725-8

Google Scholar

[15] Engui Fan, Multiple traveling wave solutions of nonlinear evolution equations using a unifiex algebraic method, J. Phys. A, Math. Gen. 35 (2002) 6853-6872.

DOI: 10.1088/0305-4470/35/32/306

Google Scholar

[16] Z.Y. Yan, H.Q. Zhang, New explicit and exact traveling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A 252 (1999) 291-296.

DOI: 10.1016/s0375-9601(98)00956-6

Google Scholar

[17] S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001) 69-74.

DOI: 10.1016/s0375-9601(01)00580-1

Google Scholar

[18] Z. Yan, Abundant families of Jacobi elliptic functions of the (2 + 1)-dimensional integrable DaveyCStawartson-type equation via a new method, Chaos, Solitons and Fractals 18 (2003) 299-309.

DOI: 10.1016/s0960-0779(02)00653-7

Google Scholar

[19] C. Bai, H. Zhao, Complex hyperbolic-function method and its applications to nonlinear equations, Phys. Lett. A 355 (2006) 22-30.

Google Scholar

[20] E.M.E. Zayed, A.M. Abourabia, K.A. Gepreel, M.M. Horbaty, On the rational solitary wave solutions for the nonlinear HirotaCSatsuma coupled KdV system, Appl. Anal. 85 (2006) 751- 768.

DOI: 10.1080/00036810600604789

Google Scholar

[21] K.W. Chow, A class of exact periodic solutions of nonlinear envelope equation, J. Math. Phys. 36 (1995) 4125-4137.

Google Scholar

[22] M.L. Wang, Y.B. Zhou, The periodic wave equations for the KleinCGordonCSchordinger equations, Phys. Lett. A 318 (2003) 84-92.

Google Scholar