[1]
M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A 199 (1995) 169-172.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, p.68–73.
DOI: 10.1016/0375-9601(95)00092-h
Google Scholar
[2]
E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary, wave solutions for nonlinear Hirota-Satsuma coupled KdV equations, Chaos, Solitons and Fractals 22 (2004) 285-303.
DOI: 10.1016/j.chaos.2003.12.045
Google Scholar
[3]
L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDE nonlinear transformations and reduction of nonlinear PDE to a quadrature, Phys. Lett. A 278 (2001) 267-270.
DOI: 10.1016/s0375-9601(00)00778-7
Google Scholar
[4]
E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysis. and mod-ified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221-234.
DOI: 10.1515/ijnsns.2004.5.3.221
Google Scholar
[5]
M. Inc, D.J. Evans, on traveling wave solutions of some nonlinear evolution equations, Int. J. Comput. Math. 81 (2004) 191-202.
Google Scholar
[6]
M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical models, Appl. Math. Comput. 190 (2007) 988-996.
DOI: 10.1016/j.amc.2007.01.070
Google Scholar
[7]
Mingliang Wang, Xiangzheng Li, Jinliang Zhang, The (G'/G)-: expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372 (2008) 417-423.
DOI: 10.1016/j.physleta.2007.07.051
Google Scholar
[8]
M.J. Ablowitz, P.A. Clarkson, Solitons, Non-linear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, (1991).
Google Scholar
[9]
M.R. Miura, Backlund Transformation, Springer-Verlag, Berlin, (1978).
Google Scholar
[10]
C. Rogers, W.F. Shadwick, Backlund Transformations, Academic Press, New York, (1982).
Google Scholar
[11]
R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (1973) 805-810.
DOI: 10.1063/1.1666399
Google Scholar
[12]
R. Hirota, J. Satsuma, Soliton solution of a coupled KdV equation, Phys. Lett. A 85 (1981) 407-408.
Google Scholar
[13]
Z.Y. Yan, H.Q. Zhang, New explicit solitary wave solutions and peri-odic wave solutions for Whitham-Broer-Kaup equation in shallow w-ater, Phys. Lett. A 285 (2001) 355-362.
DOI: 10.1016/s0375-9601(01)00376-0
Google Scholar
[14]
E.G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212-218.
DOI: 10.1016/s0375-9601(00)00725-8
Google Scholar
[15]
Engui Fan, Multiple traveling wave solutions of nonlinear evolution equations using a unifiex algebraic method, J. Phys. A, Math. Gen. 35 (2002) 6853-6872.
DOI: 10.1088/0305-4470/35/32/306
Google Scholar
[16]
Z.Y. Yan, H.Q. Zhang, New explicit and exact traveling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A 252 (1999) 291-296.
DOI: 10.1016/s0375-9601(98)00956-6
Google Scholar
[17]
S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001) 69-74.
DOI: 10.1016/s0375-9601(01)00580-1
Google Scholar
[18]
Z. Yan, Abundant families of Jacobi elliptic functions of the (2 + 1)-dimensional integrable DaveyCStawartson-type equation via a new method, Chaos, Solitons and Fractals 18 (2003) 299-309.
DOI: 10.1016/s0960-0779(02)00653-7
Google Scholar
[19]
C. Bai, H. Zhao, Complex hyperbolic-function method and its applications to nonlinear equations, Phys. Lett. A 355 (2006) 22-30.
Google Scholar
[20]
E.M.E. Zayed, A.M. Abourabia, K.A. Gepreel, M.M. Horbaty, On the rational solitary wave solutions for the nonlinear HirotaCSatsuma coupled KdV system, Appl. Anal. 85 (2006) 751- 768.
DOI: 10.1080/00036810600604789
Google Scholar
[21]
K.W. Chow, A class of exact periodic solutions of nonlinear envelope equation, J. Math. Phys. 36 (1995) 4125-4137.
Google Scholar
[22]
M.L. Wang, Y.B. Zhou, The periodic wave equations for the KleinCGordonCSchordinger equations, Phys. Lett. A 318 (2003) 84-92.
Google Scholar