Off-Lattice KMC Simulation of the Growth Process of Ti-Si-N Film

Article Preview

Abstract:

In order to investigate the progress of the composite films growth, and the influence of the process parameters to the film‘s structure, this paper uses the off-lattice KMC method to research the Ti-Si-N nanocomposite film, and calculate the influence of deposition temperatures, deposition rate and Si content to the film’s surface roughness, nucleation size and density of initial stage. The results show that with deposition temperature and deposition rate ascend, it can increase transition event, decrease the film’s surface roughness. Si content works on nucleation in initial stage, and the more Si contents, the larger of nucleation rate and the smaller of the grain crystal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

3636-3641

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S Z Li, Y L Shi, H R Peng. Plasma Chem and Plasma Process 1992; 12: 266.

Google Scholar

[2] S Veprek., A Niederhofer, Moto K, Bolom T Surf Coat Technol. 2000; 133-134: 152.

Google Scholar

[3] A Niedrhofer, P Nesladek, H-D Männling, Moto K, Veprek S, Jilek M. Surf Coat Technol, 1999; 120-121: 173-178.

Google Scholar

[4] Y Xu, X Cai, Q L Chen, Y Shen, L H Li. New techn New proc, 2006; 44: 5.

Google Scholar

[5] S B Nong, L H Yu, J H Xu. Surface Technology, 2008; 37(2): 45.

Google Scholar

[6] X P Hu, X J Yu, Q Q Lai, G Y Li. J Chin Electr Microsc Soc, 2002; 21(5): 631.

Google Scholar

[7] Kim K H, Choi S R, Yoon S. Surf Coat Technol, 2002; 161(2-3): 243.

Google Scholar

[8] M Nose, Y Deguchi, T Mae, Honbo E, Nagae T, Nogi K. Surf Coat Technol, 2003; 174-175: 261.

Google Scholar

[9] D Y Ma, S L Ma, K W Xu, S. Veprek. Chinese Journal of Materials Research, 2004; 18(6): 618.

Google Scholar

[10] D. Pilloud, J.F. Pierson, M.C. Marco de Lucas c, A. Cavaleiro. Surface & Coatings Technology, 2008, 2413–2417.

DOI: 10.1016/j.surfcoat.2007.09.017

Google Scholar

[11] Y G Zhu. Chinese Journal of Materials Research, 2009; 29(6): 640-645.

Google Scholar

[12] H L Wei, Z L Liu, K L Wei. Chia Phys Soc, 2000; 49(4): 791-796.

Google Scholar

[13] Z L Liu, X F Zhang, K L Yao, Y M Huang. Journal of Vacuum Science and Technology, 2005; 25(2): 83-87.

Google Scholar

[14] X P Zheng, P F Zhang, D W Fan, L Li, H Yuan, D X He. 6th Conference of Surface Engineering, 2006: 482-485.

Google Scholar

[15] G. Sitja , R. Omar Unac, C.R. Henry. Surface Science, 2010: 404–408.

Google Scholar

[16] S Veprek, S Reiprich. Thin Solid Films, 1995; 268: 64-71.

Google Scholar

[17] G Henkelman, H Jo´nsson, Journal of Chemical Physics, 2001; 115(21): 9657-9666.

Google Scholar

[18] H. Henkelman, H. Jónsson. J. Chem. Phys. 1999; 111: 7010.

Google Scholar

[19] R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson. J. Chem. Phys, 2004; 121: 9776-9792.

Google Scholar

[20] G X Wu, X J Liu, E Westkaemper, X M Wang. Chinese Journal of Vacuum Science and Technology, 2006; 26(4): 299-302.

Google Scholar

[21] Q Yang, Inner Mongolia University of Science & Technology, (2008).

Google Scholar

[22] S H Kim, J K Kim, K H Kim. Thin Solid Films, 420-421 (2002) 360–365.

Google Scholar

[23] X P Hu, G Y Li, J W Dai, Z M Ding, M Y Gu. Journal of Shanghai Tong Univercity, 2003; 37(2): 252-256.

Google Scholar

[24] C.S. Sandu,M. Benkahoul, R. Sanjinés, F. Lévy. Surface & Coatings Technology, 2006; 201: 2897–2903.

DOI: 10.1016/j.surfcoat.2006.06.003

Google Scholar

[25] Xuejie Liu, Dissertation of University Stuttgart, Jost-Jetter Verlag, Heimsheim, (2009) 101-102. 朗读显示对应的拉丁字符的拼音.

Google Scholar