[1]
L. M. P. a. T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64, pp.821-824, (1990).
Google Scholar
[2]
L. K. Bai E-W, Sprott JC, On the synchronization of a class of electronic circuits that exhibit chaos, Chaos, Solitons & Fractals, vol. 13(7), pp.1515-21, (2002).
DOI: 10.1016/s0960-0779(01)00160-6
Google Scholar
[3]
B. J. Blazejczyk-Okolewska B, Czolczynski K, Kapitaniak T, Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos, Solitons & Fractals, vol. 12(10), pp.1823-6, (2001).
DOI: 10.1016/s0960-0779(00)00145-4
Google Scholar
[4]
L. C. Gong X, On the synchronization of different chaotic oscillators, Chaos, Solitons & Fractals, vol. 11(8), pp.1231-5, (2000).
DOI: 10.1016/s0960-0779(99)00041-7
Google Scholar
[5]
S. A. Krawiecki A, Generalizations of the concept of marginal synchronization of chaos, Chaos, Solitons & Fractals, vol. 11(9), pp.1445-58, (2000).
DOI: 10.1016/s0960-0779(99)00062-4
Google Scholar
[6]
T. S. -H. Liao T-L, Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, Solitons & Fractals, vol. 11(9), pp.1387-96, (2000).
DOI: 10.1016/s0960-0779(99)00051-x
Google Scholar
[7]
R. Y. Liu F, Shan X, Qiu Z., A linear feedback synchronization theorem for a class of chaotic systems, Chaos, Solitons & Fractals, vol. 13(4), pp.723-30, (2002).
DOI: 10.1016/s0960-0779(01)00011-x
Google Scholar
[8]
Z. T. Lu J, Zhang S, Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons & Fractals, vol. 14(4), pp.529-41, (2002).
DOI: 10.1016/s0960-0779(02)00005-x
Google Scholar
[9]
W. K. -S. T. Guo-Ping Jianga, Guanrong Chen, A simple global synchronization criterion for coupled chaotic systems, Chaos, Solitons & Fractals, vol. 15, pp.925-35 (2003).
DOI: 10.1016/s0960-0779(02)00214-x
Google Scholar
[10]
A. Yanwu WangCorresponding Author Contact Information, E-mail The Corresponding Author, Zhi-Hong Guana and Xiaojiang Wen, Adaptive synchronization for Chen chaotic system with fully unknown parameters , Chaos, Solitons & Fractals, vol. 19, pp.899-903, (2004).
DOI: 10.1016/s0960-0779(03)00256-x
Google Scholar
[11]
O. M. K. Ju H. Parka, LMI optimization approach to stabilization of time-delay chaotic systems, Chaos, Solitons & Fractals, vol. 23, pp.445-50 (2005).
DOI: 10.1016/j.chaos.2004.04.024
Google Scholar
[12]
J. H. Park, Chaos synchronization between two different chaotic dynamical systems, Chaos, Solitons & Fractals, vol. 27, pp.549-54 (2006).
DOI: 10.1016/j.chaos.2005.03.049
Google Scholar
[13]
J. H. Park, Synchronization of Genesio chaotic system via backstepping approach , Chaos, Solitons & Fractals, vol. 27, pp.1369-75 (2006).
DOI: 10.1016/j.chaos.2005.05.001
Google Scholar
[14]
W. X. Ruihong Li, Shuang Li, Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control , Chaos, Solitons & Fractals, vol. 40, pp.1288-96, (2007).
DOI: 10.1016/j.chaos.2007.09.032
Google Scholar
[15]
J. -a. L. Qunjiao Zhanga, Chaos synchronization of a new chaotic system via nonlinear control , Chaos, Solitons & Fractals, vol. 37, pp.175-9, (2008).
DOI: 10.1016/j.chaos.2006.08.036
Google Scholar
[16]
F. M. Allan, Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method , Chaos, Solitons & Fractals, vol. 39, pp.1744-52, (2009).
DOI: 10.1016/j.chaos.2007.06.116
Google Scholar
[17]
G. G. Saverio Mascolo, Controlling chaotic dynamics using backstepping design with application to the lorenz system and chua's circuit, International Journal of Bifurcation and Chaos, vol. 9, pp.1425-1434, (1999).
DOI: 10.1142/s0218127499000973
Google Scholar
[18]
C. L. Jian Zhang, Hongbin Zhang, Juebang Yu, Chaos Synchronization Using Single Variable Feedback Based On Backstepping Method, Chaos, Solitons and Fractals, vol. 21, p.1183–1193, (2004).
DOI: 10.1016/j.chaos.2003.12.079
Google Scholar
[19]
P. Kokotovic, The joy of feedback: nonlinear and adaptive, IEEE Control Syst Mag vol. 6, pp.7-17, (1992).
Google Scholar
[20]
I. K. M. Krstic, P. Kokotovic, Nonlinear and adaptive control design New York John Wiley, (1995).
Google Scholar
[21]
X. M. H. Zhang, M. Li, J. Zou, Controlling and tracking hyperchaotic Rossler system via active backstepping design, Chaos Solitons and Fractals, vol. 26, pp.353-361, (2005).
DOI: 10.1016/j.chaos.2004.12.032
Google Scholar
[22]
A. R. Sahab and M. H. Zarif, Chaos Control In Nonlinear Systems Using The Generalized Backstopping Method, American J. of Engineering and Applied Sciences, vol. 1, pp.378-388, (2008).
DOI: 10.3844/ajeassp.2008.378.383
Google Scholar
[23]
A. R. Sahab and M. H. Zarif, Improve Backstepping Method to GBM, World Applied Sciences Journal, vol. 6, pp.1399-1403, (2009).
Google Scholar
[24]
J. -S. R. Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transcations on Systems, Man, and Cybernetics, vol. 23, pp.665-685, May (1993).
DOI: 10.1109/21.256541
Google Scholar
[25]
K. Erenturk, ANFIS-Based Compensation Algorithm for Current-Transformer Saturation Effects, IEEE Transactions on Power Delivery, vol. 24, NO. 1, January (2009).
DOI: 10.1109/tpwrd.2008.2005882
Google Scholar
[26]
C. S. R. Jang, E. Mizutani, Neuro-fuzzy and soft computation: Prentice Hall, NJ, (1997).
Google Scholar
[27]
Fengxiang Chen, Lin Chen, Weidong Zhang, Stabilization of parameters perturbation chaotic system via adaptive backstepping technique, ELSEVEIR, (2008).
DOI: 10.1016/j.amc.2007.10.051
Google Scholar