Generalization Backstepping Method Based on Stabilization of Parameters Perturbation Lu Chaos Using Adaptive Neuro-Fuzzy Inference System

Article Preview

Abstract:

This study deals with the control and synchronization chaos using Generalized Backstepping Method (GBM). This new method to control nonlinear systems was called generalized backstepping method because of its similarity to Backstepping Method (BM) but its more abilities to control systems than it. GBM could achieve better performance than BM in respect of lower signal control, short settling time and overshoot, control ability of MIMO systems and non strictly feedback systems. GBM consists of parameters which accept positive values. The parameters are usually chosen optional. The system responded differently for each value. This paper introduce a novel adaptive neuro fuzzy control method which trained by different error data to achieve optimal parameters. So with optimal parameters controller can stabilize the Lu chaos in much quicker than GBM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

3925-3931

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. P. a. T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64, pp.821-824, (1990).

Google Scholar

[2] L. K. Bai E-W, Sprott JC, On the synchronization of a class of electronic circuits that exhibit chaos, Chaos, Solitons & Fractals, vol. 13(7), pp.1515-21, (2002).

DOI: 10.1016/s0960-0779(01)00160-6

Google Scholar

[3] B. J. Blazejczyk-Okolewska B, Czolczynski K, Kapitaniak T, Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos, Solitons & Fractals, vol. 12(10), pp.1823-6, (2001).

DOI: 10.1016/s0960-0779(00)00145-4

Google Scholar

[4] L. C. Gong X, On the synchronization of different chaotic oscillators, Chaos, Solitons & Fractals, vol. 11(8), pp.1231-5, (2000).

DOI: 10.1016/s0960-0779(99)00041-7

Google Scholar

[5] S. A. Krawiecki A, Generalizations of the concept of marginal synchronization of chaos, Chaos, Solitons & Fractals, vol. 11(9), pp.1445-58, (2000).

DOI: 10.1016/s0960-0779(99)00062-4

Google Scholar

[6] T. S. -H. Liao T-L, Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, Solitons & Fractals, vol. 11(9), pp.1387-96, (2000).

DOI: 10.1016/s0960-0779(99)00051-x

Google Scholar

[7] R. Y. Liu F, Shan X, Qiu Z., A linear feedback synchronization theorem for a class of chaotic systems, Chaos, Solitons & Fractals, vol. 13(4), pp.723-30, (2002).

DOI: 10.1016/s0960-0779(01)00011-x

Google Scholar

[8] Z. T. Lu J, Zhang S, Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons & Fractals, vol. 14(4), pp.529-41, (2002).

DOI: 10.1016/s0960-0779(02)00005-x

Google Scholar

[9] W. K. -S. T. Guo-Ping Jianga, Guanrong Chen, A simple global synchronization criterion for coupled chaotic systems, Chaos, Solitons & Fractals, vol. 15, pp.925-35 (2003).

DOI: 10.1016/s0960-0779(02)00214-x

Google Scholar

[10] A. Yanwu WangCorresponding Author Contact Information, E-mail The Corresponding Author, Zhi-Hong Guana and Xiaojiang Wen, Adaptive synchronization for Chen chaotic system with fully unknown parameters , Chaos, Solitons & Fractals, vol. 19, pp.899-903, (2004).

DOI: 10.1016/s0960-0779(03)00256-x

Google Scholar

[11] O. M. K. Ju H. Parka, LMI optimization approach to stabilization of time-delay chaotic systems, Chaos, Solitons & Fractals, vol. 23, pp.445-50 (2005).

DOI: 10.1016/j.chaos.2004.04.024

Google Scholar

[12] J. H. Park, Chaos synchronization between two different chaotic dynamical systems, Chaos, Solitons & Fractals, vol. 27, pp.549-54 (2006).

DOI: 10.1016/j.chaos.2005.03.049

Google Scholar

[13] J. H. Park, Synchronization of Genesio chaotic system via backstepping approach , Chaos, Solitons & Fractals, vol. 27, pp.1369-75 (2006).

DOI: 10.1016/j.chaos.2005.05.001

Google Scholar

[14] W. X. Ruihong Li, Shuang Li, Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control , Chaos, Solitons & Fractals, vol. 40, pp.1288-96, (2007).

DOI: 10.1016/j.chaos.2007.09.032

Google Scholar

[15] J. -a. L. Qunjiao Zhanga, Chaos synchronization of a new chaotic system via nonlinear control , Chaos, Solitons & Fractals, vol. 37, pp.175-9, (2008).

DOI: 10.1016/j.chaos.2006.08.036

Google Scholar

[16] F. M. Allan, Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method , Chaos, Solitons & Fractals, vol. 39, pp.1744-52, (2009).

DOI: 10.1016/j.chaos.2007.06.116

Google Scholar

[17] G. G. Saverio Mascolo, Controlling chaotic dynamics using backstepping design with application to the lorenz system and chua's circuit, International Journal of Bifurcation and Chaos, vol. 9, pp.1425-1434, (1999).

DOI: 10.1142/s0218127499000973

Google Scholar

[18] C. L. Jian Zhang, Hongbin Zhang, Juebang Yu, Chaos Synchronization Using Single Variable Feedback Based On Backstepping Method, Chaos, Solitons and Fractals, vol. 21, p.1183–1193, (2004).

DOI: 10.1016/j.chaos.2003.12.079

Google Scholar

[19] P. Kokotovic, The joy of feedback: nonlinear and adaptive, IEEE Control Syst Mag vol. 6, pp.7-17, (1992).

Google Scholar

[20] I. K. M. Krstic, P. Kokotovic, Nonlinear and adaptive control design New York John Wiley, (1995).

Google Scholar

[21] X. M. H. Zhang, M. Li, J. Zou, Controlling and tracking hyperchaotic Rossler system via active backstepping design, Chaos Solitons and Fractals, vol. 26, pp.353-361, (2005).

DOI: 10.1016/j.chaos.2004.12.032

Google Scholar

[22] A. R. Sahab and M. H. Zarif, Chaos Control In Nonlinear Systems Using The Generalized Backstopping Method, American J. of Engineering and Applied Sciences, vol. 1, pp.378-388, (2008).

DOI: 10.3844/ajeassp.2008.378.383

Google Scholar

[23] A. R. Sahab and M. H. Zarif, Improve Backstepping Method to GBM, World Applied Sciences Journal, vol. 6, pp.1399-1403, (2009).

Google Scholar

[24] J. -S. R. Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transcations on Systems, Man, and Cybernetics, vol. 23, pp.665-685, May (1993).

DOI: 10.1109/21.256541

Google Scholar

[25] K. Erenturk, ANFIS-Based Compensation Algorithm for Current-Transformer Saturation Effects, IEEE Transactions on Power Delivery, vol. 24, NO. 1, January (2009).

DOI: 10.1109/tpwrd.2008.2005882

Google Scholar

[26] C. S. R. Jang, E. Mizutani, Neuro-fuzzy and soft computation: Prentice Hall, NJ, (1997).

Google Scholar

[27] Fengxiang Chen, Lin Chen, Weidong Zhang, Stabilization of parameters perturbation chaotic system via adaptive backstepping technique, ELSEVEIR, (2008).

DOI: 10.1016/j.amc.2007.10.051

Google Scholar