[1]
J. Fax and R. Murray, Information flow and cooperative control of vehicle formations, IEEE Transactions Automatic Control, vol. 49, 2004, pp.1465-1476.
DOI: 10.1109/tac.2004.834433
Google Scholar
[2]
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions Automatic Control, vol. 52, 2007, p.852–862.
DOI: 10.1109/tac.2007.895842
Google Scholar
[3]
C. Reynolds, Flocks, herds, and schools: A distributed behavior model, Computer Graphics., vol. 21, 1987, p.5–34.
Google Scholar
[4]
W. Ren, Distributed attitude alignment in spacecraft formation flying, International Journal of Adaptive Control and Signal Processing, vol. 21, 95-113.
DOI: 10.1002/acs.916
Google Scholar
[5]
D. Casbeer, D. Kingston, R. Beard, T. McLain, S. Li, and R. Mehra, Cooperative forest fire surveillance using a team of small unmanned air vehicles, International Journal of System Science, vol. 37, 2006, p.351–360.
DOI: 10.1080/00207720500438480
Google Scholar
[6]
K. Moore and D. Lucarelli, Decentralized adaptive scheduling using consensus variables, International Journal of Robust and Nonliear Control, vol. 17, 2007, p.921–940.
DOI: 10.1002/rnc.1143
Google Scholar
[7]
L. Xiao, S. Boyd, and S. Lall, A scheme for robust distributed sensor fusion based on average consensus, Proc. of the International Conference on Information Processing in Sensor Networks, 2005, p.63–70.
DOI: 10.1109/ipsn.2005.1440896
Google Scholar
[8]
R. Saber and J. Shamma, Consensus Filters for Sensor Networks and Distributed Sensor Fusion, Proc. of the joint CDC-ECC Conf., 2005, pp.6698-6703.
Google Scholar
[9]
W. Ren, R. Beard and D. Kingston, Multi-agent Kaman consensus with relative uncertainty, Proc. American control conference, 2005, pp.1686-1690.
DOI: 10.1109/acc.2005.1470240
Google Scholar
[10]
R. Saber and R. Murray, Consensus problem in networks of agents with switching topology and time-delays, IEEE Transactions Automatic Control, vol. 49, 2004, pp.1520-1533.
DOI: 10.1109/tac.2004.834113
Google Scholar
[11]
W. Ren, Multi-vehicle consensus with a time-varying reference state, System & Control Letters, vol. 56, 2007, pp.474-483.
DOI: 10.1016/j.sysconle.2007.01.002
Google Scholar
[12]
T. Li and J. Zhang, Mean square average-consensus under measurement noise and fixed topologies: Necessary and sufficient conditions, Automatica, vol. 45, 2009, p.1929-(1936).
DOI: 10.1016/j.automatica.2009.04.017
Google Scholar
[13]
W. Ren and R. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Transactions Automatic Control, vol. 50, 2005, pp.655-661.
DOI: 10.1109/tac.2005.846556
Google Scholar
[14]
M. Huang, and J. Manton, Coordination and consensus of networked agents with noisy measurement: Stochastic algorithms and asymptotic behavior, SIAM Journal Contorl and Optimation, vol. 48, 2009, pp.134-161.
DOI: 10.1137/06067359x
Google Scholar
[15]
C. Godsil and G. Royle, Algebraic Graph Theory, New York: Springer-Verlag, (2001).
Google Scholar
[16]
W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control, London, U.K.: Springer-Verlag, (2008).
Google Scholar
[17]
N. Michel and K. Miller, Qualitative analysis of large scale dynamical systems, New York: Academic Press, (1977).
Google Scholar
[18]
S. Chow and H. Teicher, Probability theory: Independence, interchangeability martingales, New York: Springer, 1997. Figure 1. Curves of velocity states of example Figure 2. Curves of position states of example.
Google Scholar