The Inexact Rayleigh Quotient Iteration for the Large Hermitian Matrix Eigenproblem

Article Preview

Abstract:

The inexact Rayleigh quotient iteration (RQI) is used for computing the smallest eigenpair of a large Hermitian matrix. It’s shown in this paper that under the uniform positiveness condition a new convergence theorem of the inexact RQI is presented and proved by the nature of eigenvalues. All the results are verified and analyzed by numerical experiments.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

5230-5234

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Golub G H, Loan C V, Matrix Computations. The John Hopkins University press, Baltimore, London, (1996).

Google Scholar

[2] Parlett B N. The Symmetric Eigenvalue Problem. SIAM, (1998).

Google Scholar

[3] Simoncini V, Elden L. Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT, 42: 159-182 (2002).

Google Scholar

[4] Notay Y. Convergence analysis of inexact Rayleigh quotient iteration. SIAM J. Matrix Anal. Appl, 2003, 24: 627-644 (2003).

DOI: 10.1137/s0895479801399596

Google Scholar

[5] JIA Zhong Xiao, WANG Zhen. A convergence analysis of the inexact Rayleigh quotient iteration and simplified Jacobi-Davidson method for the large Hermitian matrix eigenproblem. Science in China Series A: Mathematics Vol. 51 No. 1 1-3 (2008).

DOI: 10.1007/s11425-008-0050-y

Google Scholar

[6] Berns-Müller J, Spence A. Inexact inverse iteration with variable shift for nonsymmetric generalized eigenvalue problem. SIAM J. Matrix Anal. Appl, 28: 1069-1082 (2006).

DOI: 10.1137/050623255

Google Scholar

[7] Smit P, Paardekooper M. The effects of inexact solvers in algorithms for symmetric eigenvalue problems. Linear Algebra Appl, 287: 337-357 (1999).

DOI: 10.1016/s0024-3795(98)10201-x

Google Scholar

[8] Eshof J. The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems. Numer. Linear Algebra Appl, 9: 163-179 (2002).

DOI: 10.1002/nla.266

Google Scholar