Strain Hardening in Polycrystalline and Nanocrystalline Nickel

Article Preview

Abstract:

The work hardening behavior of electrodeposited nanocrystalline (grain size: 100 nm) and fully annealed polycrystalline nickel (grain size: 160 µm) was examined by hardness indentation analysis. First, plastic strain was introduced into the materials through large Rockwell hardness indentations. A series of Vickers micro-hardness traces below and away from the Rockwell indentation then measured the change in hardness as a function of distance from the plastic zone. The results showed that polycrystalline nickel exhibited considerable strain hardening, with micro-hardness values closest to the Rockwell indentation averaging twice the hardness value of the bulk material. On the other hand, for the nanocrystalline nickel the Vickers micro-hardness values changed only by a few percent indicating a limited strain hardening capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

550-554

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.H. Safranek: The Properties of Electrodeposited Metals and Alloys (American Elsevier Pub. Co., New York, 1974).

Google Scholar

[2] U. Erb, K. T. Aust and G. Palumbo in: Nanostructured Materials, 2nd ed., Edited by C. C. Koch, William Andrew Publications, Norwich, N. Y (2007).

Google Scholar

[3] A.M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust: Scripta Metall. Mater. Vol. 27 (1992), p.1185.

Google Scholar

[4] N. Wang, Z. Wang, K. T. Aust and U. Erb: Mat. Sci. Eng. Vol. A237 (1997), p.150.

Google Scholar

[5] K.S. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.57.

Google Scholar

[6] C.C. Koch: J. Mater. Sci. Vol. 42 (2007), p.1403.

Google Scholar

[7] A. Kulovits, S. X. Wao and J. M. K. Wiezovek: Acta Mater. Vol. 56 (2008), p.4846.

Google Scholar

[8] T. Zabev, U. Erb. G. Palumbo and P. Lin: to be published.

Google Scholar

[9] X. L. Wu, Y. T. Zhu, Y. G. Wei and Q. Wei: Phys. Rev. Lett. Vol. 103 (2009), p.205504.

Google Scholar

[10] I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard and U. Erb: Mater. Sci. Eng. Vol. A491 (2008), p.412.

Google Scholar

[11] ASTM E384 – 10e2, Specification for Test Method for Knoop and Vickers Hardness of Materials, ASTM International, West Conshohocken, PA. (2004) pp.86-109.

Google Scholar

[12] ASTM E18-08b, Specification for Test Method for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA. (2011).

Google Scholar

[13] A.W. Thompson: Acta Metall. Vol. 25(1978), p.83.

Google Scholar

[14] C.W. Sinclair, W.J. Poole and Y. Brechet: Scripta Mater. Vol. 55 (2006), p.739.

Google Scholar

[15] E.V. Kozlov, N.A. Koneva, L.I. Trishkina, A. N. Zhdanov, M.V. Fedorischeva: Materials Science Forum Vol. 584 (2008), p.35.

DOI: 10.4028/www.scientific.net/msf.584-586.35

Google Scholar

[16] A. Frank, J. Kratochvil, M. Saxlova and R. Sedlacek: Mat. Sci. and Eng. Vol. A137 (1991), p.119.

Google Scholar

[17] M.A. Meyers, A. Mishra, D.J. Benson: Prog. Mater. Sci. Vol. 5 (2006), pp.417-556.

Google Scholar