[1]
K. K. Sankaran and N. J. Grant, The structure and properties of splat-quenched aluminium alloy 2024 containing lithium additions. Mater Sci Eng, 1980. 43: pp.247-260.
DOI: 10.1016/0025-5416(80)90122-6
Google Scholar
[2]
C. J. Peel, B. Evans, C. A. Baker, D. A. Bennet, P. J. Gregson, and H.M. Flower, The development and application of improved aluminium-lithium alloys, in Aluminium-Lithium Alloys II. 1984, The Metallurgical Society of AIME: Warrendale, PA, USA. pp.363-392.
Google Scholar
[3]
K. T. Venkateswara Rao, W. Yu, and R. O. Ritchie, Fatigue crack propagation in aluminium-lithium alloy 2090: Part I. long crack behavior. Metallurgical Transactions A, 1988. 19A: pp.549-562.
DOI: 10.1007/bf02649269
Google Scholar
[4]
C. Giummara, B. Thomas, and R. J. Rioja. New aluminium lithium alloys for aerospace applications. in The light metals technology. (2007).
Google Scholar
[5]
P. S. Pao, L. A. Cooley, M. A. Imam, and G. R. Yoder, Fatigue-crack growth in 2090 Al-Li alloy. Scripta Metallurgica, 1989. 23: pp.1455-1460.
DOI: 10.1016/0036-9748(89)90076-8
Google Scholar
[6]
K. T. Venkateswara Rao, R. J. Bucci, K. V. Jata, and R. O. Ritchie, A comparaison of fatigue-crack propagation behavior in sheet and plate aluminium-lithium alloys. Mater Sci Eng, 1991. A141: pp.39-48.
DOI: 10.1016/0921-5093(91)90705-r
Google Scholar
[7]
D. L. Chen, M. C. Chaturvedi, N. Goel, and N. L. Richards, Fatigue crack growth behavoir of X2095 Ali-Li alloy. Int. J. Fatigue, 1999. 21: pp.1079-1086.
DOI: 10.1016/s0142-1123(99)00087-0
Google Scholar
[8]
X. J. Wu, W. Wallace, M.D. Raizenne, and A.K. Koul, The orientation dependence of fatigue-crack growth in 8090 al-li plate. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1994. 25(3): pp.575-588.
DOI: 10.1007/bf02651599
Google Scholar
[9]
M. D. Garratt, G. H. Bray, and D. A. Koss. Influence of texture on fatigue crack growth behavior. in Materials Solutions. 2001. Indianapolis.
Google Scholar
[10]
M. D. Garratt, G. H. Bray, D. K. Denzer, and P. Ulysse, Structural members having improved resistance to fatigue crack growth. 2005, Alcoa Inc. USA. Patent 6, 974, 633 B2.
Google Scholar
[11]
G. Vandert Voort, W. Van Geertruyden, S. Dillon, and E. Manilova, Metallographic Preparation for Electron Backscatered Diffraction. Microscopy and Microanalysis, 2006. 12: pp.1610-1611.
DOI: 10.1017/s1431927606069327
Google Scholar
[12]
ASTM standard E 399, Annual book of ASTM Standards. 1997, American Society for Testing and Materials: Philadelphia (PA).
Google Scholar
[13]
W. Elber, Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 1970. 2: pp.37-45.
DOI: 10.1016/0013-7944(70)90028-7
Google Scholar
[14]
R. O. Ritchie, Mechanisms of fatigue crack propagation in metals, ceramics and composite: Role of crack tip shielding. Mater. Sci. Eng. A, 1988. 103: p.15.
DOI: 10.1016/0025-5416(88)90547-2
Google Scholar