Synthesis, Characterization and Optical Property of Uniform Bi2S3 Nanorods

Article Preview

Abstract:

Uniform rod-like Bi2S3 nanostructures were successfully synthesized by a simple hydrothermal process in a high yield. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV-vis absorption spectroscopy were used to characterize the obtained products. It was found that the morphologies of the as-obtained Bi2S3 were highly dependent on the experimental parameters, including the pH value and the solvent. The adjustments of two parameters could lead to an obvious shape evolution of products. Then based on the discussion of the experimental parameters and the captive intermediate, the possible growth mechanism was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-214

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Huang, X.F. Duan, Y. Cui, et al.: Science Vol. 294 (2001), p.1313.

Google Scholar

[2] L.S. Li and A.P. Alivisatos: Adv. Mater. Vol. 15.

Google Scholar

[5] (2003), p.408.

Google Scholar

[3] C. Ma, D. Moore, J. Li, et al.: Adv. Mater. Vol. 15.

Google Scholar

[3] (2003), p.228.

Google Scholar

[4] S.K. Srivastava, M. Pramanik, D. Palit, et al.: Chem. Mater. Vol. 16 (2004), p.4168.

Google Scholar

[5] P.K. Mahapatra and C.B. Roy: Solar Cells Vol. 7.

Google Scholar

[3] 1982), p.225.

Google Scholar

[6] B.B. Nayak, H.N. Acharya, G.B. Mitra, et al.: Thin Solid Films Vol. 105.

Google Scholar

[1] (1983), p.17.

Google Scholar

[7] N. Goriunova, B. Kolomiets and A. Mal'kova: SoV. Phys. Technol. Phys. Vol. 1 (1956), p.1583.

Google Scholar

[8] T.W. Case: Phys. ReV. Vol. 9.

Google Scholar

[2] (1917), p.305.

Google Scholar

[9] G. Hodes, J. Manassen and D. Cahen: Nature Vol. 261 (1976), p.403.

Google Scholar

[10] B. Chen and C. Uher: Chem. Mater. Vol. 9 (1997), p.1655.

Google Scholar

[11] O. Rabin, J.M. Perez, J. Grimm, et al.: Nat. Mater. Vol. 5.

Google Scholar

[2] (2006), p.118.

Google Scholar

[12] C.H. Ye, G.W. Meng, Z. Jiang, et al.: J. Am. Chem. Soc. Vol. 124 (2002), p.15180.

Google Scholar

[13] O.C. Monteiro and T.J.J. Trindade: Mater. Sci. Lett. Vol. 19.

Google Scholar

[10] 2000), p.859.

Google Scholar

[14] G. Xie, Z.P. Qiao, M.H. Zeng, et al.: Cryst. Growth Des. Vol. 4.

Google Scholar

[3] (2004), p.513.

Google Scholar

[15] H.Y. Zhou, S.L. Xiong, L.Z. Wei, et al.: Crys. Growth Des. Vol. 9 (2009), p.3862.

Google Scholar

[16] J.J. Zhang, W.X. Zhang and Z.H. Yang: Appl. Surf. Sci. Vol. 257(2011), p.6239.

Google Scholar

[17] C.J. Tang, C.Q. Wang, F.J. Su, et al.: Solid State Sci. Vol. 12(2010), p.1352.

Google Scholar

[18] C.J. Tang, G.Z. Wang, H.Q. Wang, et al.: Mater. Lett. Vol. 62 (2008), p.3663.

Google Scholar

[19] G. Zhu, P. Liu, J. Zhou, et al.: Mater. Lett. Vol. 62 (2008), p.2335.

Google Scholar

[20] W. H. Li: Mater. Lett. Vol. 62.

Google Scholar

[2] (2008), p.243.

Google Scholar

[21] X. Zhu, J. Ma, Y. Wang, et al.: Ceram. Int. Vol. 34.

Google Scholar

[1] (2008), p.249.

Google Scholar

[22] M.B.J. Sigman and B.A. Korgel: Chem. Mater. Vol. 17 (2005), p.1655.

Google Scholar

[23] T. Thongtem, A. Phuruangrat, S. Wannapop, et al.: Mater. Lett. Vol. 64.

Google Scholar

[2] (2010), p.122.

Google Scholar

[24] H. Wang, J.J. Zhu, J.M. Zhu, et al.: J. Phys. Chem. B Vol. 106 (2002), p.3848.

Google Scholar

[25] D. Chai, X. Yuan, B. Yang, et al.: Solid State Commun. Vol. 148[9-10](2008), p.444.

Google Scholar