Enhanced Electrokinetic Removal Heavy Metals in Pyrometallurgical Zinc Slags

Article Preview

Abstract:

Ancient pyrometallurgical zinc generated large amounts of slags. Natural leaching from ancient pyrometallurgical zinc sites has contaminated the soil closed to the deposits. Electrokinetic removal technology was adopted to treat this slags. But the generation of metal hydroxide precipitation near the cathode during the electrokinetic removal process could be the most serious factor that influenced the removal rate. In this study, cation exchange membrane was used in electrokinetic removal process to overcome this major drawbacks. The final results showed that cation exchange membrane could effectively condition pH of the whole electrokinetic removal system resulted in the dissolution of the precipitated heavy metals near the cathode. In other words, the enhanced treatment have achieved positive effect to some extent. But the leak tightness of experiment setup might not be perfect. Moreover,some operation parameters of the electrokinetic removal technique must be further optimized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-82

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Costagliola P., Benvenuti M., Chiarantini L. et al., Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy, Applied Geochemistry, 23(5)(2008) 1241.

DOI: 10.1016/j.apgeochem.2008.01.005

Google Scholar

[2] Manz M. and Castro L. J., The environmental hazard caused by smelter slagss from the Sta. Maria de la Paz mining district in Mexico, Environmental Pollution, 98(1)(1997) 7.

DOI: 10.1016/s0269-7491(97)00107-3

Google Scholar

[3] BH M. and CS A., Heavy metal contamination of water in coastal and inland areas of Vasai region, India, RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT 12(2) (2008) 30.

Google Scholar

[4] Malviya R. and Chaudhary R., Factors affecting hazardous waste solidification/stabilization: A review, Journal of Hazardous Materials, 137(1) (2006) 267.

DOI: 10.1016/j.jhazmat.2006.01.065

Google Scholar

[5] Suzuki I., Microbial leaching of metals from sulfide minerals, Biotechnology Advances, 19(2) (2001) 119.

DOI: 10.1016/s0734-9750(01)00053-2

Google Scholar

[6] Edwards K. J., Hu B., Hamers R. J. et al., A new look at microbial leaching patterns on sulfide minerals, FEMS Microbiology Ecology, 34(3) (2001) 197.

DOI: 10.1111/j.1574-6941.2001.tb00770.x

Google Scholar

[7] S I. and G D., Removal of Chromium (III) from Aqueous Solution by Pretreated Microbial Waste Biomass, RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT 13(2) (2009) 29.

Google Scholar

[8] P S., W C. and C T., Heavy metals removal from contaminated soil by Siam Weed (Chromolaena odorata) and vetiver grass (Vetiveria zizanioides), RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 12(3) (2008) 23.

Google Scholar

[9] Han J. -G., Hong K. -K., Kim Y. -W. et al., Enhanced electrokinetic (E/K) remediation on copper contaminated soil by CFW (carbonized foods waste), Journal of Hazardous Materials, 177 (1-3) (2010) 530.

DOI: 10.1016/j.jhazmat.2009.12.065

Google Scholar

[10] Park S. -W., Lee J. -Y., Yang J. -S. et al., Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc, Journal of Hazardous Materials, 169(1-3) (2009) 1168.

DOI: 10.1016/j.jhazmat.2009.04.039

Google Scholar

[11] Isosaari P., Piskonen R., Ojala P. et al., Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay, Journal of Hazardous Materials, 144(1-2) (2007) 538.

DOI: 10.1016/j.jhazmat.2006.10.068

Google Scholar

[12] Traina G., Morselli L. and Adorno G. P., Electrokinetic remediation of bottom ash from municipal solid waste incinerator, Electrochimica Acta, 52(10) (2007) 3380.

DOI: 10.1016/j.electacta.2006.05.067

Google Scholar

[13] Wang J. -Y., Zhang D. -S., Stabnikova O. et al., Evaluation of electrokinetic removal of heavy metals from sewage sludge, Journal of Hazardous Materials, 124(1-3) (2005) 139.

DOI: 10.1016/j.jhazmat.2005.04.036

Google Scholar

[14] Hansen H. K., Rojo A. and Ottosen L. M., Electrodialytic remediation of copper mine tailings, Journal of Hazardous Materials, 117(2-3)(2005) 179.

DOI: 10.1016/j.jhazmat.2004.09.014

Google Scholar

[15] Xu Z. and Li D., Electrokinetic Removal of Zinc from Ancient Pyrometallurgical Slags, RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 14(4) (2010) 44~48.

Google Scholar

[16] Xu Z., Peng X., Zhou Z. et al., Evaluation the Species Distribution of Heavy Metals in Electrokinetic Removal with Visual Minteq, DISASTER ADVANCES, 3(4) (2010) 242.

Google Scholar

[17] Puppala S. K., Alshawabkeh A. N., Acar Y. B. et al., Enhanced electrokinetic remediation of high sorption capacity soil, Journal of Hazardous Materials, 55(1-3) (1997) 203.

DOI: 10.1016/s0304-3894(97)00011-3

Google Scholar

[18] Zhou D. -M., Deng C. -F., Alshawabkeh A. N. et al., Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings, Environment International, 31(6) (2005) 885.

DOI: 10.1016/j.envint.2005.05.040

Google Scholar

[19] Zhou D. -M., Deng C. -F., Cang L. et al., Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH, Chemosphere, 61(4), 519.

DOI: 10.1016/j.chemosphere.2005.02.055

Google Scholar

[20] Zhou D. -M., Deng C. -F. and Cang L., Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents, Chemosphere, 56(3) (2004) 265.

DOI: 10.1016/j.chemosphere.2004.02.033

Google Scholar

[21] Baek K., Kim D. -H., Park S. -W. et al., Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing, Journal of Hazardous Materials, 161(1) (2009) 457.

DOI: 10.1016/j.jhazmat.2008.03.127

Google Scholar

[22] Kim D. -H., Ryu B. -G., Park S. -W. et al., Electrokinetic remediation of Zn and Ni-contaminated soil, Journal of Hazardous Materials, 165(1-3) (2009) 501.

DOI: 10.1016/j.jhazmat.2008.10.025

Google Scholar

[23] Yuan C. and Chiang T. -S., Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents, Journal of Hazardous Materials, 152(1) (2008) 309.

DOI: 10.1016/j.jhazmat.2007.06.099

Google Scholar

[24] ACAR Y. B. and N. ALSHAWABKEH A., Principles of electrokinetic remediation, Environmental science technology, 27(13) (1993) 2638.

DOI: 10.1021/es00049a002

Google Scholar

[25] Pazos M., Sanromán M. A. and Cameselle C., Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique, Chemosphere, 62(5) (2006).

DOI: 10.1016/j.chemosphere.2005.04.071

Google Scholar