First-Principles Study on Mechanical Properties of IVB-Group Transition-Metal Nitrides TiN, ZrN, and HfN

Article Preview

Abstract:

IVB-group transition-metal nitrides are hot research materials due to their high hardness, good thermal stability, and excellent mechanical properties. In this paper, we studied the lattice parameters, elastic properties, electronic structures, and hardness of the face centered cubic TiN, ZrN, and HfN. The research shows that all the three types have excellent elastic properties. According to the result, elastic properties of HfN are the best of the three, as its bulk modulus and shear modulus are 278GPa and 240GPa respectively. With the calculation of electronic density of states, we find that all the three types are metallic. The wide pseudogap in DOS and the large overlap population indicate the strong Ti-N, Zr-N, and Hf-N bonds. The lower value of the density of states on the Fermi level shows that crystal structure of HfN is more stable. That is why the elastic properties of HfN are better than the others, mainly. The calculated hardness of TiN is 23.6GPa, which is the highest.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1451-1456

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hasegawa, T. Yagi: J. Alloys Compd Vol. 403 (2005), p.131

Google Scholar

[2] A. N. Christensen: Acta. Chem. Scand Vol. 29 (28, 1974-1975), p.563

Google Scholar

[3] Y. G. Zainulin, S. I. Alyamovskii, G. P. Shveikin and P. V. Gel'd: Teplofiz. Vys. Temp Vol. 9 (1971), p.496

Google Scholar

[4] E. Torok, A. J. Perry: Thin Solid Films Vol. 153 (1987), p.37

Google Scholar

[5] P. Hohenberg, W. Kohn: Phys. Rev. B Vol. 36 (1964), p.864

Google Scholar

[6] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J.Hasnip, S. J. Clark, and M. C. Payne: J. Phys. : Condens. Matter Vol. 14 (2002), p.2717

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[7] J. P. Perdew, J. A. Cherary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais: Phys. Rev. B Vol. 46(1992), p.6671

Google Scholar

[8] D. Vanderbilt: Phys. Rev. B Vol. 41(1990), p.7892

Google Scholar

[9] Z. J. Wu, E. J. Zhao, H. P. Xiang, et. al: Phys. Rev. B Vol. 76 (2007), p.054115

Google Scholar

[10] R. Hill: Proc Phys. R. Soc. London Vol. 65 (1952), p.349

Google Scholar

[11] Y. G. Zhang, Y. F. Han, G. L. Chen, J. T. Guo, X. J. Wan, and D. Feng: Intermetallic Compound Structural Material (National Defence Industry Publication, Beijing 2001) (in Chinese)

Google Scholar

[12] A. Bouhemadou: Braz. J. Phys Vol. 40 (2010), p.52

Google Scholar

[13] S. F. Pugh: Philos. Mag Vol. 45 (1954), p.823

Google Scholar

[14] F. M. Gao: Phys. Rev. B Vol. 73 (2006), p.132104

Google Scholar