Synthesis of Alumina-Tungsten Carbide Composites by Self-Propagating High Temperature Synthesis Process

Article Preview

Abstract:

Alumina-Tungsten Carbide (Al2O3-WC) composites were synthesized by self-propagating high temperature synthesis (SHS) from a powder mixture of WO3-C-Al. The reaction was carried out in a SHS reactor under static argon gas at a pressure of 0.5 MPa. The standard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. The effects of carbon mole ratio in precursor mixture and diluents of NaCl and Al2O3 on the Al2O3-WC conversion were investigated using X-ray diffraction and scanning electron microscope technique. The as-synthesized products of Al2O3-WC2-WC powders were concurrently formed and the reduction of W2C phase was found when added diluents in precursors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

226-231

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Merzhanov: Ceramics Inter. Vol. 21 (1995), p.371

Google Scholar

[2] A. Saidi, A. Chrysanthou, J.V. Wood and J.L.F. Kellie: Ceramics Inter. Vol. 23 (1997), p.185

Google Scholar

[3] J.C. LaSalvia, J.C. Kim, D.K. Lipsett and M.A. Meyers: Metall. Trans. A Vol. 26 (1995), p.3001

Google Scholar

[4] R. Licheri, R. Orru and G. Cao: Mater. Sci. & Engg. A Vol. 367 (2004), p.185

Google Scholar

[5] Q. Xu, X. Zhang, J Han, X. He and V.L. Kvanin: Mater. Lett. Vol. 57 (2003), p.4439

Google Scholar

[6] S.W. Jo, M.D. Ka and Y.S. Kim: Acta Mater., Vol. 44 (1996), p.4317

Google Scholar

[7] X. Zhang, C Zhu, W Qu, X. He and V.L. Kvanin: Composites Sci & Tech., Vol. 62 (2002), p.(2037)

Google Scholar

[8] D.A. Hoke, D.K. Kim, J.C. LaSalvia and Meyers:J. Am. Ceram. Soc., Vol. 79[1] (1996), p.177

Google Scholar

[9] R.C Cutler, A.C. Hurford and A.V. Virkar: Mater. Sci. & Eng. A, Vol. 105/106 (1988), p.183

Google Scholar

[10] C.R. Bowen and B. Derby: J. Mater. Sci., Vol. 31(1996), p.3791.

Google Scholar

[11] Y. Li, N. Li and G. Ruan: Am. Ceram Soc. Bull., Jan (2005), p.9201

Google Scholar

[12] M.A. Meyers, E.A. Olevsky, J. Ma and M. Jamet: Mater. Sci. & Eng. A, Vol. 311 (2001), p.83

Google Scholar

[13] J. Zhang, J.H. Lee, C.W. Won, S.S. Cho and B.S. Chun: J. Mater. Sci., Vol. 34(1999), p.5211

Google Scholar

[14] N. Chaichana, N. Memongkol, N., J. Wannasin. and S. Niyomwas: CMU J. Nat. Sci., Vol. 7(1) (2008), p.51

Google Scholar

[15] N.A. Gokcen and R.G. Reddy :Thermodynamics (Plenum Press, New York, USA 1996)

Google Scholar

[16] I. Barin, O. Knacke and O. Kubaschewski: Thermodynamic Properties of Inorganic Substances (Springer-Verlag, Berlin and New York, NY, USA 1973)

Google Scholar

[17] J.J. Moore and H.J. Feng: Prog. In Mater. Sci. Vol. 39(1995), p.243

Google Scholar