Study on the Morphology of Nano-ZnO in Foam Glass

Article Preview

Abstract:

Nanoscale ZnO has received considerable attention due to its remarkable properties like absorbing wave. Foam glass containing nano-ZnO can enhance the property of wave absorbing. Investigating the morphology of nano-ZnO and researching the moderate amount of Zn filler in the foam glass are important. In the work, Zn filler was added into the porous glass to grow the nano-ZnO with no catalyst by Vapor-Solid mechanism. Foam glasses were fabricated by sintering mixture of pure foam glass raw material and Zn powder. The patterns of nano-ZnO were investigated by scanning electron microscope (SEM). Meanwhile, the detail of the growth mechanism of ZnO in foam glass was analysed. The results indicate that with the content of Zn increased, the granular nano-crystals become more, and the crystal whiskers become less, shorter, and a little thicker in pores. The diameter of the whiskers is about 50 nm. What’s more, the size of pores become small as Zn mass ratio increasing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

598-601

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Kim and H. W. Kim: Physica B (2003), p.328.

Google Scholar

[2] B. Liu and H. C. Zeng: J. Am. Chem. Soc. Vol. 125 (2003), p.4430.

Google Scholar

[3] C. Weichsel, O. Pagni and A .W. R . Leitch: Semicond. Sci. Technol. Vol. 20 (2005), p.840.

Google Scholar

[4] Y. J. Chen M.S. Cao T.H. Wang and Q. Wan: Appl. Phys. Lett. Vol. 84 (2004), p.3367.

Google Scholar

[5] C. L. Jiang, W. Q. Zhang, G. F. Zou, W. C.Yu and Y. T. Qian: J. Phys. Chem. B Vol. 109 (2005), p.1361.

Google Scholar

[6] X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li: Chem. Phys. Vol. 78 (2002), p.99.

Google Scholar

[7] J. J. Wu and S. C. Liu: Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[8] J. J. Wu and S. C. Liu: J. Phys. Chem. B Vol. 106(2002), p.9546.

Google Scholar

[9] Z. P. Sun, L. Liu, L. Zhang and D. Z. Jia: Nanotechnology Vol. 17 (2006), p.2266.

Google Scholar

[10] E. J. Tang, G. X. Cheng, X. S. Pang, X. L. Ma, F. B. Xing: Colloid Polym. Sci. Vol 284(2006),p.422.

Google Scholar

[11] R. Hayati, M. Feizpour, A. Barzegar: Nanotechnology, 9th IEEE Conference, 2009.

Google Scholar

[12] Y. Ding, P. X. Gao, Z. L. Wang: J. Am. Chem. Soc. Vol.126 (2004), p.2066.

Google Scholar

[13] L. I. Trakhtenberg, M. A. Kozhushner, G. N. Gerasimov, V. F. Gromov, V. L. Bodneva, T. V. Antropova, E. Axelrod, A. Greenbaum (Gutina) and Yu. Feldman: J. Non-Cryst Solids Vol. 356 (2010), p.642.

DOI: 10.1016/j.jnoncrysol.2009.06.051

Google Scholar

[14] Z. W. Zhou, W. M. Peng, S. Y. Ke and H. Deng: J. Mater. Process. Technol. Vol. 89-90 (1999), pp.415-418

Google Scholar

[15] X. H. Li, L. Wang, J.C. Liu, Z.Q. Li, D.S. Lv, CN Patent 101,445,326 (2009).

Google Scholar

[16] X. D. Wang, J. H. Song, P. Li, J.H. Ryou, R.D. Dupuis, C.J. Summers and Z.L. Wang: J. Am. Chem. Soc. Vol. 127 (2005), p.7920.

Google Scholar

[17] X. S. Fang, L. D. Zhang: J. Mater. Sci. Technol. Vol. 1 (2006), p.1.

Google Scholar

[18] D. S. Lv, X. H. Li, L. Wang, J. J. Du and J. Zhang: Adv. Mater. Res . Vol. 105 (2010) p.765.

Google Scholar