Impregnation of Ru(cod)(tmhd)2 into PDMS Film in Supercritical Carbon Dioxide

Article Preview

Abstract:

Metallopolymer nanocomposites has attracted much attention recently. The impregnation of organometallic compound from the supercritical solution into the polymer matrix has several advantages. The impregnation process isotherm of bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II) (Ru(cod)(tmhd)2) into polydimethylsiloxane (PDMS) film in supercritical carbon dioxide (scCO2) was investigated. The experiments for determining the isotherm were carried out at 40 °C and 10.34 MPa. It was found that the impregnation isotherm is linear up to the saturation concentration of the precursor in scCO2 fluid phase. The slope of the linear curve defined equilibrium partition coefficient K provides a measure of the partitioning of Ru(cod)(tmhd)2 between the PDMS film and scCO2 fluid phase and it is constant under the same conditions. It showed that K is mainly govered by the density of scCO2 and does not change much with temperature at a constant density of scCO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

2260-2264

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Watkins and T. J. McCarthyr: Chem. Mater. Vol. 7 (1995), p.(1991)

Google Scholar

[2] R.K. Boggess, L. T. Taylor, D.M. Stoakley, and A. K. ST. Clair: J. Appl. Polym. Sci. Vol.64 (1997), p.1309

Google Scholar

[3] G. Tepper and N. Levit: Ind. Eng. Chem. Res. Vol. 39 (2000), p.4445

Google Scholar

[4] E. Said-Galiyev, L. Nikitin, R. Vinokur, M. Gallyamov, M. Kurykin, and O. Petrova: Ind. Eng. Chem. Res. Vol. 39 (2000), p.4891

DOI: 10.1021/ie000251g

Google Scholar

[5] P.B. Webb, P.C. Marr, A.J. Parsons, H.S. Gidda, and S.M. Howdle: Pure Appl. Chem. Vol. 72 (2000), p.1347

Google Scholar

[6] E. M. Glebov, Y. Li, L.G. Krishtopa, O. M. Usov, and L. N. Krasnoperov: Ind. Eng. Chem. Res. Vol. 40 (2001), p.4058

DOI: 10.1021/ie0100939

Google Scholar

[7] N. Nazem, L.T. Taylor, and A.F. Rubira: J. Supercrit. Fluids. Vol. 23 (2002), p.43

Google Scholar

[8] S. Yoda, A. Hasegawa, H. Suda, Y. Uchimaru, K. Haraya, T. Tsuji, and K. Otake: Chem. Mater. Vol. 16 (2004), p.2363

DOI: 10.1021/cm0349250

Google Scholar

[9] K. Yang, and R. Ozisik: J. Supercrit. Fluids. Vol. 43 (2008), p.515

Google Scholar

[10] J. A. Darr and M. Poliakoff: Chem. Rev. Vol. 99 (1999), p.495

Google Scholar

[11] E. Alonso, F.J. Cantero, J. Garcia, and M.J. Cocero: J. Supercrit. Fluids. Vol. 24 (2002), p.123

Google Scholar

[12] C.D. Saquing, T.T. Cheng, C. Erkey, and M. Aindow: J. Phys. Chem. B. Vol. 108 (2004), p.7716

Google Scholar

[13] C.D. Saquing, D. Kang, M. Aindow, and C. Erkey: Micropor. Mesopor. Mater. Vol. 80 (2005), p.11

Google Scholar

[14] F. Furno, K.S. Morley, B. Wong, B.L. Sharp, P.L. Arnold, S.M. Howdle, R. Bayston, P.D. Brown, P.D. Winship, H.J. Reid: J. Antimicrobial Chemotherapy. Vol. 54 (2004), p.1019

DOI: 10.1093/jac/dkh478

Google Scholar

[15] K.S. Giesfeldt, R. M. Connatser, M.A. De Jesu´ s, P. Dutta, and M.J. Sepaniak: J. Raman Spectrosc. Vol. 36 (2005), p.1134

Google Scholar

[16] J.R. Royer, J.M. DeSimone, and S.A. Khan: Macromolecules. Vol. 32 (1999), p.8965

Google Scholar

[17] Y. Zhang, D. Kang, M. Aindow, and C. Erkey: J. Phys. Chem. B. Vol. 109 (2005), p.2617

Google Scholar