The Preparation of Cu2ZnSnSe4 Films by Selenization of the Oxide Precursors

Article Preview

Abstract:

A low-cost non-vacuum process for fabrication of Cu2ZnSnSe4 (CZTSe) films by solvent-free mechanochemical method and spin-coating process is described. First, highly monodisperse Cu, Zn, Sn oxides nanoparticles are synthesized via a facile, solvent-free route. Second, the oxide particulate precursors are deposited in a thin layer by spin-coating technique. Finally, the dry layers are sintered into CZTSe thin films selenization. Through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), it is found that near stoichiometric CZTSe films with a micron-sized grains are obtained in our work.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

597-601

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kemell, M. Ritala, M. Leskela, Crit.Rev. Solid State Mater. Sci. 30(2005)1–31.

Google Scholar

[2] H.W. Schock, Prog. Photovolt: Res. Appl. 160 (2000) 151-160.

Google Scholar

[3] J.F. Guillemoles, Thin Solid Films 362 (2000) 338-345.

Google Scholar

[4] M. Kaelin, D. Rudmann and A. N. Tiwari, Sol. Energy, 2004, 77, 749.

Google Scholar

[5] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells, 1997, 49, 407

DOI: 10.1016/s0927-0248(97)00119-0

Google Scholar

[6] T.M. Friedlmeier, H. Dittrich, H.W. Schock, Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaicapplications, The 11th Conference on Ternary and Multinary Compounds, ICTMC-11, Salford, 8–12 September 1997, p.345–348.

Google Scholar

[7] R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, K.H. Kim, J. Phys. Chem.Soli. 68 (2007) 1908–(1913)

Google Scholar

[8] G. Zoppi1, I. Forbesl, R. W. Miles1, P.J. Dale, J. J. Scragg, L.M. Peter, Prog. Photovolt: Res. Appl. 17 (2009) 315–319

Google Scholar

[9] T. Tanaka, T. Yamaguchi, T. Ohshima, H. Itoh, A. Wakahara, A. Yoshida, Sol. Energy Mater. Sol. Cells 75 (2003) 109.

Google Scholar

[10] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, J. Cryst. Growth 208 (2000) 416–422.

Google Scholar

[11] I.D. Olekseyuk, L.D. Gulay, I.V. Dydchak, L.V. Piskach, O.V. Parasyuk, O.V. Marchuk, J. Alloy. Compds. 340 (2002) 141–145.

DOI: 10.1016/s0925-8388(02)00006-3

Google Scholar

[12] G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg, L.M. Peter, Prog .Photovolt.: Res. Appl. 17 (2009) 315.

Google Scholar

[13] W. Haas, T. Rath, A. Pein, J. Rattenberger, G. Trimmel, F. Hofer, Chem. Commun. 47 (2011) 2050–2052.

DOI: 10.1039/c0cc04397d

Google Scholar