Preparation and Characterization of Aluminium-Doped SnS Thin Films

Article Preview

Abstract:

Metallic-doping chalcogenide compounds have attracted significant interest in application of photovoltaic devices recently. In this article, Al-doped SnS films with a thickness of about 500 nm have been deposited on glass substrates by thermal evaporation technique. Al-doping concentration (from 0 at. % to 15 at.%) in the SnS films can be controlled accurately by varying Al layer thickness. The effects of Al–doping on the physical properties of the films have been investigated by X-ray diffraction, scanning electron microscopy, ultraviolet-visible-near infrared spectroscopy measurements and Hall effect measurement system. All the films are orthorhombic SnS with preferred (111) crystallites orientation, and they are of p-type conductivity. With the increasing of Al-doping concentration, the evaluated direct band gap Edir of the SnS: Al films decreases from 1.50eV to 1.29eV and the conductivities of the films increase. Therefore, the optical and semiconducting properties of the SnS films have been improved by Al-doping.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

712-716

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Fthenakis, S.C. Morris, P.D. Moskowitz, D.L. Morgan: Prog. Photovoltaics Res. Appl. Vol. 7 (1999), p.489.

Google Scholar

[2] D.C. Menezes, G.M. de Lima, A.O. Porto, C.L. Donnici, J.D. Ardisson, A.C. Doriiguetto, J. Ellena: Polyhedron Vol. 23 (2004), p.2103

DOI: 10.1016/j.poly.2004.06.007

Google Scholar

[3] T.H. Sajeesh, Anita R. Warrier, C. Sudha Kartha, and K.P. Vijayakumar: Thin Solid Films, Vol. 518 (2010), p.4370

DOI: 10.1016/j.tsf.2010.01.040

Google Scholar

[4] M. Devika, N. Koteeswara Reddy, K. Ramesh, K. R. Gunasekhar, E.S. R. Gopal, and K.T. Ramakrishna Reddy: J. Electrochem. Soc, Vol. 153 (2006), p.727

DOI: 10.1063/1.2216790

Google Scholar

[5] G. Gordillo, M. Botero, and J.S. Oyola: Microelectron. J. Vol. 39 (2008), p.1351

Google Scholar

[6] W. Albers, C. Hass, H.J. Vink, and J.D. Wasscher: J. Appl. Phys Vol. 32 (1961), p.2220

Google Scholar

[7] S. Zhang, S.Y. Cheng: Micro & Nano Letters, 2011, Vol. 6 (2011), p.559

Google Scholar

[8] I.J. Devos, J.O. Fourcade, J.C. Jumas, P. Lavela: Phys. Rev. B Vol. 61 (2000), p.3110

Google Scholar

[9] G. Machado, D.N. Guerra, D. Leinen, J.R. Ramos-Barrado, R.E. Marotti, E.A. Dalchiele: Thin Solid Films Vol. 490 (2005), p.124

DOI: 10.1016/j.tsf.2005.04.042

Google Scholar

[10] S.Y. Cheng, Y.Q. Chen, C.C. Huang, G.N. Chen: Thin Solid Films Vol. 500 (2006), p.96

Google Scholar

[11] P.P. Hankare, S.D. Delekar, P.A. Chate, S.D. Sabane, K.M. Garadkar, V.M. Bhuse: Semicond. Sci. Technol. Vol. 20 (2005), p.257

DOI: 10.1088/0268-1242/20/3/001

Google Scholar