Diopside-Based Glass-Ceramics from Chrysotile Asbestos Tailing

Article Preview

Abstract:

By utilizing chrysotile asbestos tailing from Shannan ore in Sichuan as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by adding some limestone, quartz sand, Al2O3, H3BO3, Na2CO3 and CaF2. The optimum procedure for glass-ceramics was as follows: melting at 1400 for 60 min, sintering at 1100 for 120 min. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase had high density, fine performance of resisting compression (366MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall result indicated that it was a feasible attempt to produce glass-ceramics materials for building and decorative materials from chrysotile asbestos tailing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. DeGuire and H.S. Risbud: J. Mater. Sci., Vol. 19 (1984), p.1766.

Google Scholar

[2] B. Cumpston, F. Shadman and H.S. Risbud: J. Mater. Sci., Vol. 27(1992), p.1784.

Google Scholar

[3] M. Pelino, C. Cantalini and Ma.J. Rincon: J. Mater. Sci., Vol. 32(1997), p.4660.

Google Scholar

[4] A.D. Kellermeyer and L.S. Stwart: Environmental Impact Assessment Review, Vol. 9(1989), p.223.

Google Scholar

[5] L.M. Elliot, C.C. Chapman and J.C. Freeman: Ceramic Transactions, Vol. 39(1994), p.90.

Google Scholar

[6] M. Alonso, E. Sainz and A.F. Lopez, et al.: J. Mater. Sci. Letters, Vol. 13(1994), p.1607.

Google Scholar

[7] S. Suzuki, M. Tanaka and T. Kaneko: J. Mater. Sci., Vol. 32(1997), p.1779.

Google Scholar

[8] A.D. Tillman, J.A. Rossi and M.K. Vick: Incineration of Municipal and Hazardous Solid Wastes, Academic Press, New York, (1989).

DOI: 10.1016/b978-0-12-691245-6.50010-9

Google Scholar

[9] A. Dwivedi, Y. Berta and F.R. Speyer: J. Mater. Sci., J. Vol. 29(1994), p.2308.

Google Scholar

[10] W.P. McMillan: Glass-ceramics, Academic Press, London, (1964).

Google Scholar

[11] Z. Strnad: Glass-ceramic Materials. Elsevier, Amsterdam, (1986).

Google Scholar

[12] C.C. R. Monteiro: Alternative raw materials for the production of glass-ceramics. In Sectorial Worshop on Ceramics, ACTD, Luso, Portugal, (1988).

Google Scholar

[13] C.C. R. Monteiro and M.M. Rolim: Ciencia Tecnologia dos Materials, Vol. 4(1992), p.11.

Google Scholar

[14] M.J. Rincon and C. Cantalini: Sociedad Espanola de Ceramica y Vidrio, Vol. (1991), p.45.

Google Scholar

[15] R. Cioffi, P. Pernice and A. Aronne, et al.: J. Mater. Sci., Vol. 28(1993), p.6594.

Google Scholar

[16] M.E. Rabinovich: Advances in Ceramics, Vol. 4(1983), p.340.

Google Scholar

[17] M. Romero and Ma.J. Rincon: J. Eur. Ceram. Soc., Vol. 18(1998), p.160.

Google Scholar

[18] S. Nakawura, US Patent 3, 955, 989, 11 May. (1976).

Google Scholar

[19] A. Karamanov, I. Penkov amd I. Gutzow, et al., Bulg. Patent 50, 879, 13 July. (1990).

Google Scholar

[20] M. Erol, S. Kucukbayrak and A. Ersoy-Mericboyu: Chemical Engineering Journal, Vol. 132(2007), p.343.

Google Scholar

[21] W.A. Deer, R.A. Howie and J. Zussman: Longman Scientific & Technical, New York, (1992).

Google Scholar