The Effects of Milling Methods on Doped LaCrO3 Nanopowder Prepared by Glycine Nitrate Process on Particle Size and Phase Transformation

Article Preview

Abstract:

In this study the effects of milling methods on particle size and phase transformation of strontium and nickel doped lanthanum chromite as an interconnect material for solid oxide fuel cells (SOFC) were investigated. Two compositions of La0.9Sr0.1Cr0.9Ni0.1O3 (LS10N10) and La0.7Sr0.3Cr0.9Ni0.1O3 (LS30N10) were synthesized by glycine nitrate process (GNP). The samples were characterized by means of X-ray diffraction, nitrogen adsorption–desorption, scanning and transmission electron microscope and laser particle size analyzer. Two different milling methods were used, namely, high-energy milling (HEM) and ball milling (BM) and the effects of these milling methods of as-synthesis powders on the particle size distribution, agglomeration behavior and phase transformation were also investigated. The results showed that BM caused reduction of particle size to submicron size with D50 value of 125 nm while HEM resulted in agglomeration. The obtained nanopowders, according to XRD results were single phase with perovskite type crystal structure and only in high content of Sr some SrCrO4 was detected. HEM caused the dissolution of the second phase in LS30N10.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.Z. Zhu, S.C. Deevi, Mater. Sci. Eng. A, Vol. 348 (2003), p.227.

Google Scholar

[2] J.W. Fergus, Solid State Ionics, Vol. 171 (2004), p.1.

Google Scholar

[3] N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, J. Mater. Sci., Vol. 25 (1990), p.4531.

Google Scholar

[4] X. Ding, Y. Liu, L. Gao, L. Guo, J. Alloy Comps., Vol. 425 (2006), p.318.

Google Scholar

[5] M. Mori, N.M. Sammes, Solid State Ionics, Vol. 146 (2002), p.301.

Google Scholar

[6] L.A. Chick, L.R. Pederson, G. D. Maupin, Mater. Lett., Vol. 10 (1990), p.6.

Google Scholar

[7] K. Deshpande, A. Mukasyan, J. Am. Ceram. Soc., Vol. 86 (7) (2003), p.1149.

Google Scholar

[8] P. Duran, J. Tartaj, F. Capel, C. Moure, J. Eur. Ceram. Soc., Vol. 24 (2004), p.2619.

Google Scholar

[9] X. Ding, Y. Liu, L. Gao, L. Guo, J. Alloy Comp., Vol. 458 (2008), p.346.

Google Scholar

[10] L.A. Chick, G.D. Maupin, G.L. Graff. L.R. Pederson, D.E. McCready, J.L. Bates, Mater. Res. Soc. Symp., Vol. 249 (1992), p.159.

Google Scholar

[11] R.E. Juarez, D.G. Lamas, G.E. Lascalea, N.E. Walsöe de Reca, J. Eur. Ceram. Soc., Vol. 20 (2000), p.133.

Google Scholar

[12] A. Tsoga, A. Naoumidis, W. Jungen, D. Stover, J. Eur. Ceram. Soc., Vol. 19 (1999), p.907.

Google Scholar

[13] S.R. Nair, R.D. Purohit, A.K. Tyagi, P. K. Sinha, B.P. Sharma, Mater. Res. Bul., Vol. 43 (2008), p.1573.

Google Scholar

[14] L.F.G. Setz, I. Santacruz, M. T. Colomer, S. R. H. Mello-Castanho, R. Moreno, J. Eur. Ceram. Soc., Vol. 30 (2010), p.2897.

Google Scholar

[15] P. Scherrer, Göttinger Nachrichten Gesell., Vol. 2 (1918), p.98.

Google Scholar

[16] A.M. Segadaes, M.R. Morelli, R.G. A. Kiminami, J. Eur. Ceram. Soc., Vol. 18 (1998) p.771.

Google Scholar

[17] O. Burgos-Montes, R. Moreno, M. T. Colomer, J.C. Farinas, J. Eur. Ceram. Soc., Vol. 26 (2006) p.3365.

Google Scholar