Dielectric and Impedance Spectroscopic Studies of SrBi4-xLaxTi4O15

Article Preview

Abstract:

Ceramic samples of SrBi4-xLaxTi4O15 with x=0.025 is prepared by standard solid state reaction method. The phase formation is confirmed by X-ray diffraction (XRD) studies. The Dielectric and Impedance measurement has been performed in the temperature range 50°C to 600°C and the frequency range 1Hz to 1MHz. The Curie temperature is found to decrease from 535°C to 505°C. The Cole-Cole plots are semi circles in the temperature range 450°C to600°C. The relaxation time is decreased with increase of temperature. The investigations on this material at high temperatures and frequencies reveal its stable behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-56

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Arrivillius, Ark. Kemi 1 (1949), 463; 1(1949), 499.

Google Scholar

[2] B. Arrivillius, Ark. Kemi 2 (1950), 519.

Google Scholar

[3] B. Arrivillius, Ark. Kemi 5 (1952), 39.

Google Scholar

[4] T. Takenaka, J. Ceram. Soc. Japan. , 110(4) (2002), 215.

Google Scholar

[5] T. Takenaka, and H. Nagata, J. Eur. Ceram. Soc., 25 (12) (2005), 2693.

Google Scholar

[6] S. Ikegami and I. Ueda Jpn.J. Appl. Phys., 13(10) (1974), 1572.

Google Scholar

[7] T. Takenaka and K. Sakata, Japan J. Appl. Phys., 19(1) (1980), 31.

Google Scholar

[8] H. Irie and M. Miyayama, Appl. Phys. Lett., 79(2) (2001), 251.

Google Scholar

[9] I-S. Yi and M. Miyayamma J. Ceram. Soc. Japan., 106(3) (1998), 285.

Google Scholar

[10] J.F. Scott, and C.A. Paz de Araujo, Science, 246 (1989), 1400.

Google Scholar

[11] S.K. Dey, R. Zuleeg, Ferroelectrics, 108 (1990), 37.

Google Scholar

[12] T. Takeuchi,T. Tani and Y. Saito, Jpn.J. Appl. Phys. 38 (1999), 5553.

Google Scholar

[13] E.C. Subbarao, Int. Ferroelectr., 12 (1996), 33.

Google Scholar

[14] R.Z. Hou ,X.M. Chen , J. Mater. Resch., 20 (9)(2005), 2354.

Google Scholar

[15] Z. Zhang, H. Yan, X. Dong, Y. Wang Mater. Resch. Bull, 38(8) (2003), 241.

Google Scholar

[16] Chung-Hsin Lu, Chung-Hung Wu, J. Eur. Ceram. Soc., 22 (2002), 707.

Google Scholar

[17] N. VenkatRamulu, M. Aparna, G. Prasad, G.S. Kumar, and T. BhimaShankaram, Ind.J. pur. Apl. Phys. 39 (2001), 78.

Google Scholar

[18] N. VenkatRamulu, G. Prasad, S.V. Suryanarayana and T. BhimaShanakaram, Bull. Mater. Sci. 23 (5) (2000), 431.

Google Scholar

[19] Y.P. Chen, Mater. Lett. 57 (2003), 3623.

Google Scholar

[20] Sunil Kumar., and Varma, K.B.R., J. Phys. D: Appl. Phys., 42(9)(2009), 075405.

Google Scholar

[21] Can Jin, Chen-Peng Du, Jun Zhu, Jun-hui He, Xiang-yu Mao and Xiao-bing Chen, J. Phys. D: Appl. phys. 39 (2006), 2415.

DOI: 10.7498/aps.55.3716

Google Scholar

[22] B. Mamatha A.R. James and P. Sarah, Physica B: Condensed matter 405(2010), 4772.

Google Scholar

[23] Zhijun Xu, Ruiquing Chu, Jigong Hao, Yanjie Zhang, Guorong Li , Qingrui Yin, Physica B: Condenced matter 404 (2009), (2045).

Google Scholar

[24] R. Von Hipple, Dielectrics and Waves, john Wiley and sons, NY, (1987).

Google Scholar

[25] .R. Macdonald, Impedance Spectroscopy, Wiley, NY, (1987).

Google Scholar

[26] D.C. Sinclair, A.R. West, J. Mater. Sci., 29 (1994), 6061.

Google Scholar

[27] A.R. James, G.S. Kumar, T. Bhimashankaram, S.V. Suryanarayana, Ferroelectrics 189 (1996), 81.

Google Scholar

[28] S. Dutta, P.K. Sinha, and R.N.P. choudary, J. Appl. Phys., 96 (2004), 1607.

Google Scholar