[1]
A. Juris, V Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry and chemiluminescence, Coord. Chem. Rev., Vol. 84, pp.85-277, (1988).
DOI: 10.1016/0010-8545(88)80032-8
Google Scholar
[2]
S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Photochemistry and photophysics of coordination compounds: ruthenium, Top. Curr. Chem., Vol. 280, pp.117-214, (2007).
DOI: 10.1007/128_2007_133
Google Scholar
[3]
M. Ogawa, T. Hashizume, K. Kuroda and C. Kato, Intercalation of 2, 2¢-bipyridine and complex formation by solid-solid reactions, Inorg. Chem., Vol. 30, pp.584-585, (1991).
DOI: 10.1021/ic00003a050
Google Scholar
[4]
D.A. Morgan, D.B. Shaw, M.J. Sidebottom, T.C. Soon, and R.S. Taylor, The Function of bleaching earths in the processing of palm, palm kernal and coconut oils, J. Am. Chem. Soc., Vol. 62., no. 2, pp.292-298, (1985).
DOI: 10.1007/bf02541394
Google Scholar
[5]
E. Srasra, F. Bergaya, H. Van damme, and N.K. Ariguib, Surface properties of an activated bentonite-decolorisation of rape-seed oils, Appl. Clay Sci., Vol. 4, pp.411-421, (1989).
DOI: 10.1016/0169-1317(89)90019-7
Google Scholar
[6]
N. Jovanovic and J. Janackovic, Pore structure and adsorption properties of an acid-activated bentonite, Appl. Clay Sci., Vol. 6, pp.59-68, (1991).
Google Scholar
[7]
B.K.G. Theng, Clay Polymer interactions: summary and perspectives, Clays Clay Miner., Vol. 30, pp.1-10, (1982).
DOI: 10.1346/ccmn.1982.0300101
Google Scholar
[8]
G. Lagaly, Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites, Appl. Clay Sci., Vol. 15, pp.1-9, (1999).
DOI: 10.1346/cms-wls-15.3
Google Scholar
[9]
M. Stockmeyer and K. Kruse, Adsorption of zinc and nickel ions and phenol and diethyl-ketone by bentonites of different organophilicities, Clay Miner., Vol. 26, pp.431-434, (1991).
DOI: 10.1180/claymin.1991.026.3.12
Google Scholar
[10]
M.M. Mortland, Advanced in Agronomy. Amsterdam: Elsevier, (1970), Vol. 22, pp.75-117.
Google Scholar
[11]
U. Mingelgrin and F. Tsvetkov, Surface condensation of organophosphate esters on smectites, Clays Clay miner., Vol. 33, pp.62-70, (1985).
DOI: 10.1346/ccmn.1985.0330107
Google Scholar
[12]
E.L. Foletto, C.C.A. Alves, L.R. Sganzerla, and L.M. Porto, Regeneration and utilization of spent bleaching clay, Lat. Am. Appl. Res., Vol. 32, pp.141-144, (2002).
Google Scholar
[13]
D.A.C. Manning, Introduction to Industrial Minerals, 1st ed., Chapman & Hall: London, (1995), pp.65-66.
Google Scholar
[14]
I.N. Rodriguez, J.A.M. Leyva, and J.L.H. H De Cisneros, Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by different pulse voltammetry, Anal. Chim. Acta, Vol. 344, pp.167-173, (1997).
DOI: 10.1016/s0003-2670(97)00043-3
Google Scholar
[15]
P. Kula, Z. Navratilova, P. Kulova, and M. Kotoucek, Sorption and determination of Hg (II) on clay modified carbon paste electrodes, Anal. Chim. Acta, Vol. 385, pp.91-101, (1999).
DOI: 10.1016/s0003-2670(98)00697-7
Google Scholar
[16]
S. Hu, Electrocatalysis reduction of molecular oxygen on a sodium montmorillonite-methyl viologen carbon paste chemically modified electrode, J. Electroanal. Chem., Vol. 463, pp.253-257, (1999).
DOI: 10.1016/s0022-0728(98)00445-8
Google Scholar
[17]
F.J. Anaissi, G.J. -F. Demets, H.E. Toma, and A.C.V. Coelho, Modified electrodes based on mixed bentonite vanadium (V) oxide xerogel, J. Electroanal. Chem., Vol. 464, pp.48-53, (1999).
DOI: 10.1016/s0022-0728(98)00465-3
Google Scholar
[18]
P. Falaras, F. Lezou, P. Pomonis, and A. Ladavos, Al-pillared acid-activated montmorillonite modified electrodes, J. Electroanal. Chem., Vol. 486, pp.156-165, (2000).
DOI: 10.1016/s0022-0728(00)00133-9
Google Scholar
[19]
V. Ganesan, and R. Ramaraj, In situ spectroelectrochemical studies of phenaothiazine dyes at clay coated electrodes, J. Electroanal. Chem., Vol. 490, pp.54-61, (2000).
DOI: 10.1016/s0022-0728(00)00223-0
Google Scholar
[20]
M. Darder, M. Colilla, and E. Ruiz-Hitzky, Chitosan-clay nanocomposites: application as electrochemical sensors, Appl. Clay Sci., Vol. 28, pp.199-208, (2005).
DOI: 10.1016/j.clay.2004.02.009
Google Scholar
[21]
N. Chuekuna, A. Wongchaisuwat, and L. Meesuk, Zinc-8- hydroxyquinoline intercalated in calcium bentonite: a promising DO sensor, , J. Phys. Chem. Solids, vol. 71, pp.423-426, (2010).
DOI: 10.1016/j.jpcs.2009.12.004
Google Scholar
[22]
K. Udomphan, A. Wongchaisuwat, and L. Meesuk, CdS- intercalated bentonite/ Carbon composite as electrode for sulfide ion, , Materials Science Forum, vol. 663-665, pp.690-693, (2011).
DOI: 10.4028/www.scientific.net/msf.663-665.690
Google Scholar
[23]
K. Udomphan, A. Wongchaisuwat, and L. Meesuk, CdS- intercalated bentonite: A novel sulfide ion selective electrode, in Proc. 2010 Int. Conf. Physics Science and Technology (ICPST2010), Hong Kong, 2010, pp.110-113.
DOI: 10.4028/www.scientific.net/amm.110-116.472
Google Scholar
[24]
D. Huang, B. Xu, J. Tang, J. Luo, L. Chen, L. Yang, Z. Yang and S. Bi, Indirect determination of sulfide ion in water samples at trace level by anodic stripping voltammetry using mercury film electrode, Anal. Meth., vol. 2, pp.154-158, (2010).
DOI: 10.1039/b9ay00183b
Google Scholar