[Ca (2,2′-Bipyridine)3]2+-Intercalated Montmorillonite: An Application as Potentiometric Sensor

Article Preview

Abstract:

This article involves the use of [Ca (2,2′-bipyridine)3]2+-intercalated montmorillonite as a potentiometric sensor to measure anions in aqueous solution. The [Ca (2,2′-bipyridine)3]2+-intercalated montmorillonite was prepared by modification of an in situ solid-solid reaction, between natural Ca (II)-montmorillonite and 2,2′-bipyridine at a molar ratio 1:3. The formation of [Ca (2,2′-bipyridine)3]2+- in the interlayer space of montmorillonite was confirmed by powder X-ray diffraction (XRD) and the existence of 2,2′-bipyridine was confirmed by the C:N ratio of the product compared with that of the 2,2′-bipyridine molecule. The potentiometric sensor was constructed by mixing [Ca (2,2′-bipyridine)3]2+-intercalated montmorillonite with artificial graphite, polytetrafluoroethylene (PTFE) and carboxymethylcellulose (CMC) in an appropriate ratio. It was found that the sensor had higher sensitivity to S2- rather than other anions, graphs of log [S2-] vs voltage (mv) gave a slope 30.0 which was closed to theoretical value, 29.5. Activity of the [Ca (2,2′-bipyridine)3]2+ sensor was verified by using sensor made from Ca (II)-montmorillonite as a reference. Reproducibility and precision of the electrode were also determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-13

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Juris, V Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry and chemiluminescence, Coord. Chem. Rev., Vol. 84, pp.85-277, (1988).

DOI: 10.1016/0010-8545(88)80032-8

Google Scholar

[2] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Photochemistry and photophysics of coordination compounds: ruthenium, Top. Curr. Chem., Vol. 280, pp.117-214, (2007).

DOI: 10.1007/128_2007_133

Google Scholar

[3] M. Ogawa, T. Hashizume, K. Kuroda and C. Kato, Intercalation of 2, 2¢-bipyridine and complex formation by solid-solid reactions, Inorg. Chem., Vol. 30, pp.584-585, (1991).

DOI: 10.1021/ic00003a050

Google Scholar

[4] D.A. Morgan, D.B. Shaw, M.J. Sidebottom, T.C. Soon, and R.S. Taylor, The Function of bleaching earths in the processing of palm, palm kernal and coconut oils, J. Am. Chem. Soc., Vol. 62., no. 2, pp.292-298, (1985).

DOI: 10.1007/bf02541394

Google Scholar

[5] E. Srasra, F. Bergaya, H. Van damme, and N.K. Ariguib, Surface properties of an activated bentonite-decolorisation of rape-seed oils, Appl. Clay Sci., Vol. 4, pp.411-421, (1989).

DOI: 10.1016/0169-1317(89)90019-7

Google Scholar

[6] N. Jovanovic and J. Janackovic, Pore structure and adsorption properties of an acid-activated bentonite, Appl. Clay Sci., Vol. 6, pp.59-68, (1991).

Google Scholar

[7] B.K.G. Theng, Clay Polymer interactions: summary and perspectives, Clays Clay Miner., Vol. 30, pp.1-10, (1982).

DOI: 10.1346/ccmn.1982.0300101

Google Scholar

[8] G. Lagaly, Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites, Appl. Clay Sci., Vol. 15, pp.1-9, (1999).

DOI: 10.1346/cms-wls-15.3

Google Scholar

[9] M. Stockmeyer and K. Kruse, Adsorption of zinc and nickel ions and phenol and diethyl-ketone by bentonites of different organophilicities, Clay Miner., Vol. 26, pp.431-434, (1991).

DOI: 10.1180/claymin.1991.026.3.12

Google Scholar

[10] M.M. Mortland, Advanced in Agronomy. Amsterdam: Elsevier, (1970), Vol. 22, pp.75-117.

Google Scholar

[11] U. Mingelgrin and F. Tsvetkov, Surface condensation of organophosphate esters on smectites, Clays Clay miner., Vol. 33, pp.62-70, (1985).

DOI: 10.1346/ccmn.1985.0330107

Google Scholar

[12] E.L. Foletto, C.C.A. Alves, L.R. Sganzerla, and L.M. Porto, Regeneration and utilization of spent bleaching clay, Lat. Am. Appl. Res., Vol. 32, pp.141-144, (2002).

Google Scholar

[13] D.A.C. Manning, Introduction to Industrial Minerals, 1st ed., Chapman & Hall: London, (1995), pp.65-66.

Google Scholar

[14] I.N. Rodriguez, J.A.M. Leyva, and J.L.H. H De Cisneros, Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by different pulse voltammetry, Anal. Chim. Acta, Vol. 344, pp.167-173, (1997).

DOI: 10.1016/s0003-2670(97)00043-3

Google Scholar

[15] P. Kula, Z. Navratilova, P. Kulova, and M. Kotoucek, Sorption and determination of Hg (II) on clay modified carbon paste electrodes, Anal. Chim. Acta, Vol. 385, pp.91-101, (1999).

DOI: 10.1016/s0003-2670(98)00697-7

Google Scholar

[16] S. Hu, Electrocatalysis reduction of molecular oxygen on a sodium montmorillonite-methyl viologen carbon paste chemically modified electrode, J. Electroanal. Chem., Vol. 463, pp.253-257, (1999).

DOI: 10.1016/s0022-0728(98)00445-8

Google Scholar

[17] F.J. Anaissi, G.J. -F. Demets, H.E. Toma, and A.C.V. Coelho, Modified electrodes based on mixed bentonite vanadium (V) oxide xerogel, J. Electroanal. Chem., Vol. 464, pp.48-53, (1999).

DOI: 10.1016/s0022-0728(98)00465-3

Google Scholar

[18] P. Falaras, F. Lezou, P. Pomonis, and A. Ladavos, Al-pillared acid-activated montmorillonite modified electrodes, J. Electroanal. Chem., Vol. 486, pp.156-165, (2000).

DOI: 10.1016/s0022-0728(00)00133-9

Google Scholar

[19] V. Ganesan, and R. Ramaraj, In situ spectroelectrochemical studies of phenaothiazine dyes at clay coated electrodes, J. Electroanal. Chem., Vol. 490, pp.54-61, (2000).

DOI: 10.1016/s0022-0728(00)00223-0

Google Scholar

[20] M. Darder, M. Colilla, and E. Ruiz-Hitzky, Chitosan-clay nanocomposites: application as electrochemical sensors, Appl. Clay Sci., Vol. 28, pp.199-208, (2005).

DOI: 10.1016/j.clay.2004.02.009

Google Scholar

[21] N. Chuekuna, A. Wongchaisuwat, and L. Meesuk, Zinc-8- hydroxyquinoline intercalated in calcium bentonite: a promising DO sensor, , J. Phys. Chem. Solids, vol. 71, pp.423-426, (2010).

DOI: 10.1016/j.jpcs.2009.12.004

Google Scholar

[22] K. Udomphan, A. Wongchaisuwat, and L. Meesuk, CdS- intercalated bentonite/ Carbon composite as electrode for sulfide ion, , Materials Science Forum, vol. 663-665, pp.690-693, (2011).

DOI: 10.4028/www.scientific.net/msf.663-665.690

Google Scholar

[23] K. Udomphan, A. Wongchaisuwat, and L. Meesuk, CdS- intercalated bentonite: A novel sulfide ion selective electrode, in Proc. 2010 Int. Conf. Physics Science and Technology (ICPST2010), Hong Kong, 2010, pp.110-113.

DOI: 10.4028/www.scientific.net/amm.110-116.472

Google Scholar

[24] D. Huang, B. Xu, J. Tang, J. Luo, L. Chen, L. Yang, Z. Yang and S. Bi, Indirect determination of sulfide ion in water samples at trace level by anodic stripping voltammetry using mercury film electrode, Anal. Meth., vol. 2, pp.154-158, (2010).

DOI: 10.1039/b9ay00183b

Google Scholar