[1]
L. Peen, F. Larson (1979) J Appl. Polym. Sci. 23: 59.
Google Scholar
[2]
P. Lee-Sulivan, K. S. Chian, C. Y. Yue, et al. (1994) J. Mater. Sci. Lett. 13: 305.
Google Scholar
[3]
Guruvenketa S., Mohan Raoa G., Manoj Komathb, Ashok M. Raichur, Plasma Surface Modificafion of Polystyrene and Polyethylene, Applied Surface Science, 2004, 236: 278~284.
DOI: 10.1016/j.apsusc.2004.04.033
Google Scholar
[4]
Bretagnola F, Tatouliana M, Are-Khonsaria F, Lorangb G, Surface Modification of Polyethylene Powder by Nitrogen and Ammonia Low Pressure Plasma in Reactor, Reactive&Functional Polymers, 2004, 61: 221~232.
DOI: 10.1016/j.reactfunctpolym.2004.06.003
Google Scholar
[5]
Park J-M, Kim D-S, Kim S-R, Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-Treated PBO and Kevlar Fiber/Epoxy Composites Using Micromechanical Techniques and Surface Wettability, Journal of Colloid and Interface Science, 2003, 264: 431~445.
DOI: 10.1016/s0021-9797(03)00419-3
Google Scholar
[6]
Wu G. M, Oxygen Plasma Treatment of High Performance Fibers for Composites, Materials Chemistry and Physics, 2004, 85: 81~87.
DOI: 10.1016/j.matchemphys.2003.12.004
Google Scholar
[7]
Navarre S, Degueil M, Maillard B, Chemical Modification of Molten Polyethylene by Thermolysis of Peroxyketals, Polymer, 2001, 42: 4509~4516.
DOI: 10.1016/s0032-3861(00)00727-8
Google Scholar
[8]
Wu G. M, Hung C H, You J H, Liu S J, Surface Modification of Reinforcement Fibers for Composites by Acid Treatments, Journal of Polymer Research, 2004, 11(1)31~36.
DOI: 10.1023/b:jpol.0000021734.69852.5b
Google Scholar
[9]
Wu S S, Ji G D, Shen J, A Study on Ultraviolet Irradiation Modification of High-Density Polyethylene and Its Effect in the Compatibility of HDPE/PVA Fibre Composites, Materials Letters, 2003, 57: 2647~2650.
DOI: 10.1016/s0167-577x(02)01344-7
Google Scholar
[10]
Fallania F, Ruggeria G, Broncoc S, Bertoldoc M, Modification of Surface and Mechanical Properties of Polyethylene by Photo-initiated Reactions, Polymer Degradation and Stability, 2003, 82: 257~261.
DOI: 10.1016/s0141-3910(03)00219-2
Google Scholar
[11]
Tauber M M, Cavaco-paulo A, Robra K H, Nitrile Hydratase and Amidase from Rhodoc-occus Rhodochrous Hydrolyse Acrylic Fibers and Granulate. Applied Environmental Microbiology, 2000, 66: 1634~1638.
DOI: 10.1128/aem.66.4.1634-1638.2000
Google Scholar
[12]
Ritter H, Functionalized Polymers via Enzymic Synthesis In Desk Reference of Functional Polymers, American Chemical Society, 1997: 103~113.
Google Scholar
[13]
Mee-youngYoon, Jinm Kellis, Pouloes A, Enzymatic Modification of Polyester, AATCC, 2002(6): 26~33.
Google Scholar
[14]
Deguchi T, Kitaoka Y, Kakezawa M, Purification and Characterization of a Nylon Degrading Enzyme, Applied Environmental Microbiology, 1998, 64: 1366~1371.
DOI: 10.1128/aem.64.4.1366-1371.1998
Google Scholar
[15]
Derago A R, Chiang L C, Dowbenko R, Enzyme-Mediated Polymerization of Acrylic Monomers, Biotechnology Techniques, 1992, 523~526.
DOI: 10.1007/bf02447825
Google Scholar
[16]
Lalot T, Brigodiot M, Marechal E, A Kinetic Approach to Acrylamide Radical Polymerization by seradish Peroxidase-Mediated Initiation, Polymer International, 1999, 48: 288~292.
DOI: 10.1002/(sici)1097-0126(199904)48:4<288::aid-pi145>3.0.co;2-i
Google Scholar
[17]
Guoning Fan, Jingchan Zhao, Yongke Zhang, Zhian Guo, Polymer Bulletin, 2006, 56: 507~515.
Google Scholar