Fabrication of Aluminiferous Nanofibers by Simple Hydrolysis of Nanosized Al/AlN Powder

Article Preview

Abstract:

The nanosized Al/AlN powder was immersed in deionized water to investigate their hydrolysis behavior from 40 °C to 80 °C. The Al/AlN powder hydrolysis behavior was observed by measuring the pH of the suspension, whereas XRD and TEM analyses were employed for the characterization of the hydrolytic products. The hydrolysis at the higher temperature was different from that at the lower temperature. The nanofibrous crystalline boehmite was formed mainly over 80 °C, while the bayerite (Al (OH3)) coexisted with the boehmite predominantly below 70 °C. The hydrolytic product showed the higher specific surface area at 70 °C than that of the hydrolytic product at other temperatures. The highest specific surface area of hydrolytic product was 145.84m2/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 430-432)

Pages:

790-794

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hakuta, H. Ura, H. Hayashi, K. Arai, Mater. Chem. Phys. 93 (2005) 466-472.

Google Scholar

[2] S. C. Shen, W. K. Ng, Q. Chen, X. T. Zeng, R. B. H. Tan. Mater. Lett. 61(2007) 4280.

Google Scholar

[3] H. Hongo, F. Nihey, T. Ichihashi, Y. Ochiai, M. Yudasaka, S. Iijima. Chem. Phys. Lett. 380 (2003) 158-164.

Google Scholar

[4] M. Jahanshahi, M. H. Sanati; Z. Minuchehr, S. Hajizadeh; Z. Babaei, Nanotechnology and its applications. 929 (2007) 228-232.

Google Scholar

[5] Y. Y. Li, J. P. Liu, Zh. J. Jia., Mater. Lett. 60 (2006) 3586-3590.

Google Scholar

[6] J. F. Chen, L. Sh., F. Guo, X. M. Wang. Chem. Eng. Sci. 58 (2003) 569-575.

Google Scholar

[7] S. M. Kim, Y. J. Lee, K. W. Jun, J. Y. Park, H. S. Potdar. Mater. Chem. Phys. 104 (2007) 56-61.

Google Scholar

[8] S. Ram, S. Rana. Mater. Lett. 42 (2000) 52-60.

Google Scholar

[9] Y. Hakuta, H. Ura, H. Hayashi, K. Arai. Mater. Chem. Phys. 93 (2005) 466-472.

Google Scholar

[10] S. Ram, S. Rana. Mater. Sci. Eng., A. 304-306 (2001) 790-795.

Google Scholar

[11] Y. H. Oh, C. K. Rhee., D. H. Kim., G. H. Lee, W. W. Kim. J. Mater. Sci. 41 (2006) 4191-4195.

Google Scholar

[12] A. Kocjan, K. Krnel, T. Kosmac. J. Eur. Ceram. Soc. 28(2008) 1003.

Google Scholar

[13] C. Morterra, G. Magnacca. Catal Today. 27 (1996) 497-532.

Google Scholar