Robust Optimization Design of Compensative Pulley Block of Luffing Mechanism Using the Compromise Decision Support Problem

Article Preview

Abstract:

Robust optimization design essentially has multiple objectives. The compromise Decision Support Problem (DSP) is a multi-objective mathematical programming formulation that is used to model engineering decisions involving multiple tradeoffs. In this paper, the compromise DSP is introduced to robust optimization design, and mathematic model of a compromise DSP for robust optimization design is presented. In this framework, the tradeoff between the mean and deviation of performance is made by solving the bi-objective robust design problem. To demonstrate the feasibility of this approach, a case study involving the design of the compensative pulley block of luffing mechanism is considered.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 44-46)

Pages:

463-470

Citation:

Online since:

June 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: