[1]
L.N. Jones, D.E. Rivett, The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres, Micron 28 (1997) 469-485.
DOI: 10.1016/s0968-4328(97)00039-5
Google Scholar
[2]
L. Ganske, H. H. Meyer, H. Deutz U. Bornscheuer, Enzyme-catalysed hydrolysis of 18-methyl eicosanoic acid-cysteine thioester, Eur. J. Lipid Sci. Technol. 105 (2003) 627-632.
DOI: 10.1002/ejlt.200300800
Google Scholar
[3]
A. Hesse, H. Thomas, H. Höcker, Zero-AOX shrinkproofing treatment for wool top and fabric part 1: glow discharge treatment, Textile Res. J. 65 (1995) 355-361.
DOI: 10.1177/004051759506500608
Google Scholar
[4]
S.J. Meade, J.M. Dyer, J.P. Caldwell, W.G. Bryson, Covalent modification of the wool fibre surface: removal of the outer lipid layer, Textile Res. J. 78 (2008) 943-957.
DOI: 10.1177/0040517507087859
Google Scholar
[5]
M. Naebe, P.G. Cookson, J.A. Rippon P.R. Brady, N. Brack, G. Van Riessen, X.G. Wang, Effects of plasma treatment of wool on the uptake of sulphonated dyes with different hydrophobic properties, Textile Res. J. 80 (2010) 312-324.
DOI: 10.1177/0040517509338308
Google Scholar
[6]
A.P. Negri, H.J. Cornell, D.E. Rivett, The modification of the surface diffusion barrier of wool, J. Soc. Dyers Colorists. 109 (1993) 296-301.
DOI: 10.1111/j.1478-4408.1993.tb01579.x
Google Scholar
[7]
D.M. Lewis, J.A. Hawkes Improvements in and relating to wool treatment, World Patent WO2007017668. (2007).
Google Scholar
[8]
J.D. Leeder, J.A. Rippon, Changes induced in the properties of wool by specific epicuticle modification, J. Soc. Dyers Colorists. 101 (1985) 11-16.
DOI: 10.1111/j.1478-4408.1985.tb00984.x
Google Scholar
[9]
R.J. Ward, H.A. Willis, G.A. George, G.B. Guise, R.J. Denning, D. J Evans, R.D. Short, Surface analysis of wool by x-ray photoelectron spectroscopy and static secondary ion mass spectrometry, Textile Res. J. 63 (1993) 362-368.
DOI: 10.1177/004051759306300609
Google Scholar
[10]
H. Nolte, D.P. Bishop, H. Höcker, Effects of proteolytic and lipolytic enzymes on untreated and shrink-resist treated wool, J. Text. Inst. 87 (1996) 212-226.
DOI: 10.1080/00405009608659069
Google Scholar
[11]
H. El-Sayed, A. Kantouch, E. Heine, H. Höcker, Developing a zero-AOX shrink-resist process for wool part 1: preliminary results, Color. Technol. 117 (2001) 234-238.
DOI: 10.1111/j.1478-4408.2001.tb00068.x
Google Scholar
[12]
P. Wang, Q. Wang, X. Fan, L. Cui, J. Yuan, S. Chen, J. Wu, Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics, Enzyme Microb. Technol. 44 (2009) 302-308.
DOI: 10.1016/j.enzmictec.2009.01.007
Google Scholar
[13]
E. Smith, M. Schroeder, G. Guebitz, J. Shen, Covalent conding of protease to different sized enteric polymers and their potential use in wool processing, Enzyme Microb. Technol. 47 (2010) 105-111.
DOI: 10.1016/j.enzmictec.2010.05.011
Google Scholar
[14]
D.M. Lewis, L.T.T. Vo, Dyeing cotton with reactive dyes under neutral conditions, Color. Technol. 123 (2007) 306-311.
DOI: 10.1111/j.1478-4408.2007.00099.x
Google Scholar
[15]
A.D. Broadbent, Basic Principles of Textile Coloration, Society of Dyers and Colourists, Bradford, (2001).
Google Scholar
[16]
Q. Zhang, E. Smith, J. Shen, D. Bishop, An ethoxylated alkyl phosphate (anionic surfactant) for promotion of activities of proteases and its potential use in the enzymatic processing of wool, Biotechnol. Lett. 28 (2006) 717-723.
DOI: 10.1007/s10529-006-9049-z
Google Scholar
[17]
R. Gibb, J. Shen, P.T. Speakman, Insect resistance brought about by chemical modificatin of wool. In : Proccedings of the 11th International Wool Research Conference, 5th-9th September 2005, Leeds, UK, pp P167CCF, 1-8.
Google Scholar
[18]
M.R. Juliá, P. Erra, J. Garciá Domínguez, M.R. Infante, The influence of a cationic surfactant on the shrink-resist treatment of wool with sodium sulphite in aqueous solution, J. Soc. Dyers Colorists. 101 (1985) 66-71.
DOI: 10.1111/j.1478-4408.1985.tb01009.x
Google Scholar