[1]
Kai Grjotheim, Halvor Kvande, Li Qingfeng, Qiu Zhuxian. Metal production by molten salt electrolysis especially aluminum and magnesium. China university of mining and technology press. 1998, pp,. 73-75.
Google Scholar
[2]
A. Steinfeld, G. Thompson. Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries,. Energy, Vol 19, 1994, p.1077–1081.
DOI: 10.1016/0360-5442(94)90096-5
Google Scholar
[3]
H. Myklebust, P. Runde. Greenhouse gas emission from aluminum carbothermic technology compared to Hall-Héroult technology,. Light Met, 2005, pp.519-522.
Google Scholar
[4]
W. Choate, J. Green. Technoeconomic assessment of the carbothermic reduction process for aluminum production,. Light Met, 2006, pp.445-450.
DOI: 10.1002/9781118647851.ch156
Google Scholar
[5]
M. Halmann, A. Frei, A. Steinfeld. Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation,. Energy, Vol 32, 2007, p.2420–2427.
DOI: 10.1016/j.energy.2007.06.002
Google Scholar
[6]
F. Yang, V. Hlavacek, Carbochlorination of tantalum and niobium oxides, Thermodynamic simulation and kinetic modeling,. AIChE J. Vol 45, 1999, p.581–589.
DOI: 10.1002/aic.690450315
Google Scholar
[7]
P. Y. Wang, M. S. Liu, Y. N. Dai. Vacuum metallurgy of Al from bauxite by carbothermic reduction-chlorination,. Chinese Journal of Vacuum Science and Technology, Vol 26, 2006, pp.377-380.
Google Scholar
[8]
Fenglin Yang, Vladimir Hlavacek Recycling of carbon-enriched coal fly ash,. Powder Technology Vol 104, 1999, p.190–195.
DOI: 10.1016/s0032-5910(99)00040-6
Google Scholar