[1]
Becker H, Gartner C: Polymer micro fabrication technologies for micro fluidic systems, Anal Bioanal Chem 390, (2008), p: 89-lll.
Google Scholar
[2]
Tsao CW, DeVoe DL: Bonding of thermoplastic polymer micro fluidics, Micro fluid Nan fluid 6, (2009) , p: l -16.
Google Scholar
[3]
Amanat N, James NL, McKenzie D. R: Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices, Med. Eng. Phys , (2010).
DOI: 10.1016/j.medengphy.2010.04.011
Google Scholar
[4]
Bachmann, F. G, Russek: Laser welding of polymers using high power diode lasers, Proc. Of Photonics West, San Jose, CA, USA, SPIE Vol. 4637, (2002), p.505.
Google Scholar
[5]
G. Zak, L. Mayboudi, M. Chen, P.J. Bates, M. Birk: Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics, J. of Mater. Processing Technology, (2009), p: 24-31.
DOI: 10.1016/j.jmatprotec.2009.08.025
Google Scholar
[6]
Edmund Haberstroh, Wolf-Martin, Hoffman, Reinhart Poprawe , Fahri Sari: Laser transmission joining in micro technology, Microsyst Technol 12, (2006), p: 632-639.
DOI: 10.1007/s00542-006-0096-0
Google Scholar
[7]
Van de Ven JD, Erdman AG: Laser transmission welding of thermoplastic - part I: temperature and pressure modeling, journal Manuf. Sci. Eng., 129 (2007), p: 849-58.
DOI: 10.1115/1.2752527
Google Scholar
[8]
William Andrew: Handbook of Plastics Joining, (1997), p: 101-105.
Google Scholar
[9]
D.S. Nagesh, G.L. Datta : Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks, J. of Mater. Processing Technology (2002), p: 303-312.
DOI: 10.1016/s0924-0136(02)00101-2
Google Scholar
[10]
S. Malinov, W. Sha, J.J. McKeown : Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network, Comput. Mater. Sci. 21, (2001), p: 375-394.
DOI: 10.1016/s0927-0256(01)00160-4
Google Scholar
[11]
E.O. Ezugwu, S.J. Arthur, E.L. Hines: Tool-wear prediction using artificial neural networks, J. Mater. Processing Technology, 49, (1995), p: 255-264.
DOI: 10.1016/0924-0136(94)01351-z
Google Scholar
[12]
Sivarao, Peter Brevern, N.S.M. El-Tayeb , V.C. Vengkatesh: Modeling, Testing and Experimental Validation of Laser Machining Micro Quality Response by Artificial Neural Network, International Journal of Mechanical & Mechatronics Engineering, Vol: 9 No: 9, (2009).
DOI: 10.1109/icias.2007.4658352
Google Scholar
[13]
Wangshen Hao, Xunsheng Zhu, Xifeng Li , Gelvis Turyagyenda : Prediction of cutting force for self-propelled rotary tool using artificial neural networks, J. of Mater. Processing Technology , 180 , (2006), p : 23-29.
DOI: 10.1016/j.jmatprotec.2006.04.123
Google Scholar
[14]
Bappa Acherjee , DiptenMisra , DipankarBose , I.C. Venkadeshwaran: Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology, journal of Optics & Laser Technology , Vol . 41, (2009).
DOI: 10.1016/j.optlastec.2009.04.007
Google Scholar