Preperation of Lead-Free Potassium Sodium Niobate Based Piezoelectrics and their Electromechanical Characteristics

Article Preview

Abstract:

In this study, %7 Li modified and 0.67 % copper oxide added potassium sodium niobate (KNN) ceramics were investigated. Copper oxide was used as a sintering aid. The ceramics were prepared with conventional solid state calcination technique. All samples were crystallized in pure perovskite phase with no additional peak. The density of the samples increased with copper addition and lithium modification. The Curie temperature of KNN ceramics was found to shift to lower temperatures by CuO addition. The Curie temperature was measured as 414°C and 504°C for copper oxide added and lithium modified KNN samples, respectively. The maximum strain of copper oxide added sample was 0.12%, whereas Li modified KL ceramics yielded up to 0.10 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

492-496

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Hollenstein, D. Damjanovic and N. Setter: J. Am. Ceram. Soc. Vol. 27 (2007), pp.4093-4097.

Google Scholar

[2] E.M. Alkoy and M. Papila: Ceram. Int. Vol. 36 (2010), p.1921-(1927).

Google Scholar

[3] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura: Nature Vol. 432 (2004), pp.84-87.

DOI: 10.1038/nature03028

Google Scholar

[4] E. Ringgaard and T. Wurlitzer: J. Eur. Ceram. Soc. Vol. 25 (2005), pp.2701-2706.

Google Scholar

[5] N.M. Hagh, K. Kerman, B. Jadidian and A. Safari: J. Eur. Ceram. Soc. Vol. 29 (11) (2009), pp.2325-2332.

Google Scholar

[6] L. Egerton and D.M. Dillon: J. Am. Ceram. Soc. Vol. 42 (9) (1959), pp.438-442.

Google Scholar

[7] M.D. Maeder, D. Damjanovic and N. Setter: J. Electroceram. Vol. 13 (2004), pp.385-392.

Google Scholar

[8] D. Lin, K.W. Kwok and H.L.W. Chan: J. Alloys Compd. Vol. 461 (2008), pp.273-278.

Google Scholar

[9] J. Li, Y. Zhen, B. Zhang, L. Zhang and K. Wang: Ceram. Int. Vol. 34 (2008), pp.783-786.

Google Scholar

[10] R.E. Jaeger and L. Egerton: J. Am. Ceram. Soc. Vol. 45 (5) (1962), pp.209-213.

Google Scholar

[11] R. Wang, R. Xie, T. Sekiya and Y. Shimojo: Mater. Res. Bull. Vol. 39 (2004), pp.1709-1715.

Google Scholar

[12] E. Li, H. Kakemoto, S. Wada and T. Tsurumi: IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 55 no. 5 (2008), pp.980-987.

DOI: 10.1109/tuffc.2008.743

Google Scholar

[13] Y. Chang, Z. Yang, X. Chao, R. Zhang and X. Li: Mater. Lett. Vol. 61 (2007), pp.785-789.

Google Scholar

[14] E.M. Alkoy, A. Berksoy and A.S. Tekdas: accepted to IEEE Trans. Ultrason. Ferroelectr. Freq. Control, ( March 2011).

Google Scholar

[15] E. Hollenstein, M. Davis, D. Damjanovic and N. Setter: Appl. Phys. Lett., Vol. 87 (2005), pp.182905-3.

Google Scholar

[16] E.M. Alkoy: J. Appl. Phys. Vol. 108 (2010), p.094104.

Google Scholar