Research on Load Transferring and Sharing Law of Anti-Sliding Piles under Different Isosceles Trapezoid Cross-Section

Article Preview

Abstract:

This paper presents an effect method to reveal the load transferring and sharing law of anti-sliding piles under different isosceles trapezoid sections. Three kinds of cross-section, including the rectangle and two typical kinds of isosceles trapezoid cross-section, were carried out the load transferring and sharing tests on the basis of soil arching analysis by using the numerical modelling method. The results show that the anti-sliding piles row play an important role in resisting the driving force of the landslide, and the outer-isosceles trapezoid cross-section piles can reduce the driving force of the sliding mass in front of the piles to the maximum extent. The monitoring positions where more close to the piles transfer larger driving force from the soil to the piles. Moreover, the mechanical mechanism the anti-sliding piles with outer-isosceles trapezoid cross-section is end-bearing pattern, while the anti-sliding piles with rectangle and outer-isosceles trapezoid cross-section are end-bearing mixed with friction pattern.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 446-449)

Pages:

3007-3014

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Won, K. You, S. Jeong, S. Kim: Comput. Geotech. Vol. 32(2005), P.304-315.

Google Scholar

[2] O. Katz, E. Aharonov: Earth. Planet. Sc. Lett. Vol. 247(2004), P.280-294.

Google Scholar

[3] Z.A. Wei, S.H. Li, J.G. Wang, and L. Wan: Eng. Geol. Vol.84(2006), P.1-11.

Google Scholar

[4] T. Ito, T. Matsui: Soils. Found. Vol.15(1975), P.43-59.

Google Scholar

[5] Z.J. Shen. Chinese Journal of Geotechnical Engineering, Vol.14(1992), P.51-56.(In Chinese)

Google Scholar

[6] W.B. Wei, Y.M. Cheng: Comput. Geotech. Vol.36(2009), P.1176-1185.

Google Scholar

[7] W.B. Wei, Y.M. Cheng, L. Li: Comput. Geotech. Vol.36(2009), P.70-80.

Google Scholar

[8] K. Terzaghi: Theoretical soil mechanics. New York, NY: John Vdiley &Sons, 1943, P.76-85.

Google Scholar

[9] L. Vardoulakis, B. Graf, G. Gudehus: Int. J. Numer. Anal. Met. Vol. 5(1981), P.57-78.

Google Scholar

[10] B. Chevalier, G. Combe, P. Villard. 18eme Congres Franrais de Mecanique, Grenoble, aout, 2007, P.27-31.

Google Scholar

[11] S. Jeong, B. Kim, J. Won: Comput. Geotech. Vol.30(2003), P.671-682.

Google Scholar

[12] C.Y. Chen, G.R. Martin: Comput. Geotech. Vol. 29(2002), P.363-386.

Google Scholar

[13] R. Liang, S. Zeng: Soils. Found. Vol. 42(2002), P.83-92.

Google Scholar

[14] M. Cai, P.K. Kaiser, H. Morioka: Int. J. Rock. Mech. Min., Vol. 44(2007), P.550-564.

Google Scholar