[1]
D.S. Dugdale: Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, Vol. 8, (1960), pp.100-104.
DOI: 10.1016/0022-5096(60)90013-2
Google Scholar
[2]
G.I. Barenblatt: The mathematical theory of equilibrium of cracks in brittle fracture, Advances in Applied Mechanics, Vol. 7, (1962), pp.55-129.
DOI: 10.1016/s0065-2156(08)70121-2
Google Scholar
[3]
A. Needleman: A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, Vol. 38, (1987), pp.289-324.
DOI: 10.1115/1.3173064
Google Scholar
[4]
V. Tvergaard: Effect of fibre debonding in a whisker-reinforced material, Material Science and Engineering, Vol. A125, (1990), pp.203-213.
DOI: 10.1016/0921-5093(90)90170-8
Google Scholar
[5]
X.P. Xu, A. Needleman: Numerical simulation of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids, Vol. 42, (1994), pp.1397-1434.
DOI: 10.1016/0022-5096(94)90003-5
Google Scholar
[6]
K.G. Xin, M.H. He: Research on distributed cohesive element method, Proceedings of the Twentieth National Conference on Structural Engineering, Vol. I, (2011), pp.98-117,Ningbo: 2011.
Google Scholar
[7]
M.H. He, K.G. Xin: Separation work analysis of cohesive law and a consistently coupled cohesive law, Appl. Math. Mech. -Engl. Ed., in press, (2011)
DOI: 10.1007/s10483-011-1513-x
Google Scholar
[8]
M. Tadmor, E.B. Ortiz, and R. Phillips: Quasicontinuum analysis of defects in solids, Pholos. Mag. A, Vol. 73, (1996), pp.1529-1563.
DOI: 10.1080/01418619608243000
Google Scholar
[9]
P. Klein, H.J. Gao: Crack nucleation and growth as strain localization in a virtual-bond continuum, Eng. Fract. Mech., Vol. 61, (1998), 21-48.
DOI: 10.1016/s0013-7944(98)00048-4
Google Scholar
[10]
M.H. He, K.G. Xin, J. Guo: Fracture simulation based on EA-cohesive model with natural fracture / decohesion mechanism, Procedia Engineering, Vol. 10, (2011), pp.254-261.
DOI: 10.1016/j.proeng.2011.04.045
Google Scholar
[11]
M.H. He, S.F. Li: An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method, Comput. Mech., online first, (2011)
DOI: 10.1007/s00466-011-0643-0
Google Scholar
[12]
K.D. Papoulia, S.A. Vavasis, P. Ganuly: Spatial convergence of crack nucleation using a cohesive finite element model on a pinwheel-based mesh, International Journal for Numerical Methods in Engineering, Vol. 67, (2006), pp.1-16.
DOI: 10.1002/nme.1598
Google Scholar
[13]
G.T. Camacho, M. Ortiz: Computational modeling of impact damage in brittle materials, International Journal of Solids and Structures, Vol. 33, (1996), pp.2899-2938.
DOI: 10.1016/0020-7683(95)00255-3
Google Scholar
[14]
M.H. He, K.G. Xin: Crack convergence of Distributed Cohesive Element method and EEB convergence criterion, submitted to Journal of Tsinghua University (2011)
Google Scholar