An Identification Method for Damping Ratio of In Situ Building

Article Preview

Abstract:

Damping evaluation is of great importance in predicting the dynamic response of systems. To get the accurate damping ratios of a system, many identification methods have been proposed and developed. But only few of them achieved accurate results for in-situ buildings due to the fact that the responses are significantly influenced by noise. This paper proposes a new method to accurately identify the damping ratios of in-situ buildings. The method is based on ambient excitation technique which requires no artificial excitation applied to SSI system and to measure output-only. The damping ratio identification is then performed by combining the improved random decrement method and Ibrahim time domain method. To demonstrate the validity of the proposed approach, a case study is performed and the results are compared with the conventional peak-peaking method results. The results show the proposed method can effectively identify the modal parameter of either frequencies or damping ratios of in-situ buildings subjected to ambient excitation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 446-449)

Pages:

556-560

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] De Silva, C. W. (2000). "Vibration: Fundamentals and Practice." CRC Press.

Google Scholar

[2] Ewins, D. J. (2000). "Modal Testing: Theory, Practice and Application." Research Studies Press, Baldock, Hertfordshire, UK.

Google Scholar

[3] Brownjohn, J.M.W. (2003). "Ambient vibration studies for system identification of a tall building." Earthq. Eng. Struct. Dyn., 32(1), 71–95.

DOI: 10.1002/eqe.215

Google Scholar

[4] Peeters, B., Maeck, J., and Roeck G. D. (2001). "Stochastic system identification for operational modal analysis: A review." J. Dyn. Syst. Meas. Contr., 123(4), 659–667.

DOI: 10.1115/1.1410370

Google Scholar

[5] Siringoringo, D. M., and Fujino, Y. (2008). "System identification of suspension bridge from ambient vibration response." Eng. Struct., 30(2), 462-477.

DOI: 10.1016/j.engstruct.2007.03.004

Google Scholar

[6] James, G. H., Carne, T. G. and Lauffer, J. P. (1993). "The Natural Excitation  Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines." SAND 92-1666, Sandia National Laboratories, Albuquerque, NM.

Google Scholar

[7] Farrar, C. R., and James, G. H. (1997). "System identification from ambient vibration measurements on a bridge." J. Sound Vibr., 205(1), 1-18.

DOI: 10.1006/jsvi.1997.0977

Google Scholar

[8] Bischop, P., and Fladwell, G. (1963). "An investigation into the theory of resonance testing." Philos. Trans. R. Soc. Lond., 255(1055), 241–280.

Google Scholar

[9] Abdel-Ghaffar, A. M., and Housner, G. W. (1978). "Ambient vibration tests of suspension bridge." J. Eng. Mech. Div.-ASCE 104(5), 983-999.

DOI: 10.1061/jmcea3.0002429

Google Scholar

[10] Cole, H. A. (1968) "On-the-line analysis of random vibration", proc., AIAA/ASME 9th Structure, Structural Dynamics and Materials Conference, AIAA Paper No.68-288.

Google Scholar

[11] Huang, C. S., and Yeh, C. H. (1999). "Some properties of randomdec signatures." Mech. Syst. Signal Proc., 13(3), 491-507.

DOI: 10.1006/mssp.1998.0194

Google Scholar

[12] Vandiver, J. K., and Dunwood, A. B. (1982). "Campbell R B, Cook M F, A mathematical basis for the random decrement vibration signature analysis technique." J. Mech. Des., 104(4), 307–313.

DOI: 10.1115/1.3256341

Google Scholar

[13] Ibrahim, S. R., and Mikulcik, E. C. (1976). "The experimental determination of vibration parameters from time responses." The Shock and Vibration Bulletin, 46(5), 187–196.

Google Scholar

[14] Akaike, H. (1974). "Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes." Ann. Inst. Stat. Math., 26, 363-387.

DOI: 10.1007/bf02479833

Google Scholar

[15] Ulrych, T. J., and Bishop, T. N. (1975). "Maximum Entropy Spectral Analysis and Autoregressive Decomposition." Rev. Geophys., 13(1), 183–200.

DOI: 10.1029/rg013i001p00183

Google Scholar

[16] Desforges, M. J., Cooper, J. E., and Wright, J. R. (1995). "Spectral and modal parameter estimation from output-only measurements." Mech. Syst. Signal Proc., 9(2), 169-186.

DOI: 10.1006/mssp.1995.0014

Google Scholar

[17] Overschee, P.V., and DeMoor, B. (1991). "Subspace Algorithms for the Stochastic Identification problem." Proc., The 30th IEEE Conference on Decision and Control, Brighton, 1321-1326.

DOI: 10.1109/cdc.1991.261604

Google Scholar

[18] Peeters, B., and Roeck, G. D. (1999). "Reference-based stochastic subspace identification for output-only modal analysis." Mech. Syst. Signal Proc., 13(11), 855-878.

DOI: 10.1006/mssp.1999.1249

Google Scholar

[19] Reynders, E., and Roeck, G. D. (2008). "Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis." Mech. Syst. Signal Proc., 22(4), 617-637.

DOI: 10.1016/j.ymssp.2007.09.004

Google Scholar

[20] Ibrahim, S. R. (1986). "Double least square approach for use in structural modal identification." AIAA J., 24(3), 499-503.

DOI: 10.2514/3.9296

Google Scholar

[21] Ibrahim, S. R. (1978). "Modal confidence factor in vibration testing." J. Spacecr. Rockets, 15(5), 31-36.

Google Scholar