[1]
N. Ikeda, S.Watanabe, Stochastic Differential Equations and Diffusions Process, North-Holland, 1989.
Google Scholar
[2]
V.E. Benes, L.A. Shepp, H.S. Witsenhausen, Some solvable stochastic control problems, Stochastics 4 (1980) 39-83.
DOI: 10.1080/17442508008833156
Google Scholar
[3]
L. Alvarez, L. Shepp, Optimal harvesting of stochastically fluctuating populations, J. Math. Biol. 37 (1997) 155-177.
Google Scholar
[4]
J.A. Baiter, H. Chernoff, Sequential decisions in the control of a spaceship, In: L.M. Le Cam and J. Neyman (Eds.), Prob. 5th Berkely Symp. Math Statist Prob., Vol.3, University of California Press, Berkely, 1966, pp.181-207.
Google Scholar
[5]
A.K. Dixii, R.S. Pindyck, Investment Under Uncertainty, Princeton University Press, 1994.
Google Scholar
[6]
W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1993.
Google Scholar
[7]
J.M. Harrison, M.I. Taksar, Instantaneous control of Brownian motion, Math Operat. Res. 8 (1983) 439-453.
Google Scholar
[8]
I. Karaizas, A class of singular stochastic control problems, Adv. Appl. Prob. 15 (1983) 225-254.
Google Scholar
[9]
E.M. Lungu, B. Ksendal, Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci. 145 (1997) 47-75.
DOI: 10.1016/s0025-5564(97)00029-1
Google Scholar
[10]
S.E. Sherve, J.P. Lehoczky, D.P. Gavers, Optimal consumption for general diffusions with absorbing and reflecting barriers, SIAM J. Control Optim. 22 (1984) 55-75.
DOI: 10.1137/0322005
Google Scholar
[11]
K. Liu, M. Qin, C. Lu, On sufficient and necessary of existence for a class of singular optimal stochastic control. Journal of Systems Science and Complexity 16 (2003) 424-437.
Google Scholar
[12]
K. Liu, M. Qin, C. Lu, A class of Stationary models of singular stochastic control, Mathematica Acta Scientia 24B(1) (2004) 139-150.
DOI: 10.1016/s0252-9602(17)30369-7
Google Scholar
[13]
A. Weerasinghe, A bounded variation control problem for diffusion processes, SIAM J Control Optim. 44 (2005) 389-417.
DOI: 10.1137/s0363012903436119
Google Scholar
[14]
A. Bensoussan, J.-L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars, Paris, 1984.
Google Scholar
[15]
J.M. Harrison, T.M. Sellke, A.J. Taylor, Impulse control of Brownian motion, Math. Operat. Res. 8 (1983) 454-466.
Google Scholar
[16]
J.L. Menaldi, M. Robin, On some cheap control problems for diffusion process, Trans. Amer. Math. Soc. 278 (1983) 771-802.
DOI: 10.1090/s0002-9947-1983-0701523-2
Google Scholar
[17]
K. Liu, M. Qin, C. Lu, A class of stationary impulse stochastic control with state of semimartingal (I), J. Sys. Sci. Math. Scis. 25 (2005) 96-105.
Google Scholar
[18]
K. Liu, M. Qin, C. Lu, A class of stationary impulse stochastic control with state of semimartingal (II), J. Sys. Sci. Math. Scis. 25 (2005) 237-248.
Google Scholar
[19]
W. Hui, Some control problems with random intervention times, Adv. Appl. Prob. 33 (2001) 404-422.
Google Scholar
[20]
F.C. Klebaner, Introduction to Stochastic Calculus with Applications, World Scientific Publishing Company, Beijing, 1999.
Google Scholar
[21]
I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag, New York, 1988.
Google Scholar
[22]
P. Bremaud, Point Processes and Queues: Martingal Dynamics, Springer, New York, 1981.
Google Scholar
[23]
L.C.G. Rogers, D. Williams, Diffusions Markov Processes and Martingals: Vol.1. Foundations, Cambridge University Press, New York, 2000.
Google Scholar