[1]
T. Sarpkaya: A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, Vol. 19 (2004), p.389–447.
DOI: 10.1016/j.jfluidstructs.2004.02.005
Google Scholar
[2]
R.D. Gabbai, H. Benaroya: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, Vol. 282 (2005), p.575–616.
DOI: 10.1016/j.jsv.2004.04.017
Google Scholar
[3]
Pan Zhi-yuan, Cui Wei-cheng, Zhang Xiao-ci: An over view on VIV of slender marine structures. Journal of Ship Mechanics, Vol. 9, No. 6 (2005), pp.135-154.
Google Scholar
[4]
C.H.K. Williamson, R. Govardhan: A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering, Vol. 96 (2008), pp.713-735.
DOI: 10.1016/j.jweia.2007.06.019
Google Scholar
[5]
R.M.C. So, X.Q. Wang: Vortex-induced vibrations of two side-by-side Euler–Bernoulli beams, Journal of Sound and Vibration, Vol. 59 (2003), p.677–700.
DOI: 10.1006/jsvi.2002.5099
Google Scholar
[6]
E. Longattea, V. Verreman, M. Souli: Time marching for simulation of fluid–structure interaction problems. Journal of Fluids and Structures, Vol. 25 (2009), p.95–111.
DOI: 10.1016/j.jfluidstructs.2008.03.009
Google Scholar
[7]
I. Jadic, R.M.C. So and M.P. Mignolet: Analysis of fluid-structure interaction using a time marching technique, Journal of Fluids and Structures, Vol. 12 (1998), pp.631-654.
DOI: 10.1006/jfls.1998.0163
Google Scholar
[8]
Meneghini, J.R., Saltara, F., Fregonesi, R.A., Yamamoto, C.T., Ferrari Jr., J.A.: Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. European Journal of Mechanics B/Fluids, Vol. 23 (2004), pp.51-63.
DOI: 10.1016/j.euromechflu.2003.09.006
Google Scholar
[9]
Khalak, A., Williamson, C.H.K. : Dynamics of hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures, Vol. 10 (1996), p.455–472.
DOI: 10.1006/jfls.1996.0031
Google Scholar
[10]
Zhou C Y, So R M, Lam K: Vortex-induced vibrations of elastic circular cylinders. Journal of Fluids and Structures, Vol. 13 (1999), pp.165-189.
DOI: 10.1006/jfls.1998.0195
Google Scholar
[11]
Chen Wei, Zong ZHi: Numerical simulation of two-dimensional flow around circular cylinder using discrete vortex method. Ship Science And Technology, Vol. 35, No. 5(2010), pp.111-115.
Google Scholar
[12]
Korpus R, Jones P, Oakley O, Imas L: Prediction of viscous forces on oscillating cylinders by Reynolds-Averaged Navier-Stokes Solver. Proc. of the 10th ISOPE, Seattle, USA, 2000, Ⅲ, pp.471-477.
Google Scholar
[13]
Guilmineau E., Queutey P.: Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures, Vol. 19 (2004), pp.449-466.
DOI: 10.1016/j.jfluidstructs.2004.02.004
Google Scholar
[14]
Pan Zhi-yuan, Cui Wei-cheng: Numerical simulation of vortex-induced vibration of a circular cylinder using RANS code with dynamic meshes. The Proceedings of the 7th National Congress on Hydrodynamics and 19th National Conference on Hydrodynamics (Part I). Beijing, 2005, pp.100-108.
Google Scholar
[15]
Z.Y. Pan, W.C. Cui, Q.M. Miao: Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code. Journal of Fluids and Structures, Vol. 23 (2007), pp.23-37.
DOI: 10.1016/j.jfluidstructs.2006.07.007
Google Scholar
[16]
Xu Feng, Ou Jin-ping: Numerical simulation of unsteady flow around square cylinder and vortex-induced vibration. Journal of Southeast University (Natural Science Edition), Vol. 35, SUP Ⅰ (2005), pp.35-39.
Google Scholar
[17]
Xu Feng, Ou Jin-ping, Xiao Yi-qing: CFD numerical simulation of flow-induced transverse vibration of a square cylinder. Journal of Harbin Institute of Technology, Vol. 40, No. 12 (2008), pp.1849-1853.
Google Scholar
[18]
Xu Feng, Ou Jin-ping, Xiao Yi-qing: CFD numerical simulation of flow-induced vibration with different cross-section cylinder. Engineering Mechanics, Vol. 26 No. 4 (2009), pp.7-15.
Google Scholar
[19]
Xu Feng, Ou Jin-ping: Analysis of vortex-induced vibration of an elastic cylinder and influence parameters at low Reynolds number. Chinese Journal of Computational Mechanics, Vol. 26, No. 5 (2009), pp.613-619.
Google Scholar
[20]
He Chang-jiang, Duan Zhong-dong: Numerical simulation of vortex-induced vibration on 2D circular cylinders. The Ocean Engineering, Vol. 26, No. 1 (2008), pp.57-63.
Google Scholar
[21]
Fang Ping-zhi, Gu Ming: Numerical simulation of Vortex-induced vibration for a square cylinder at high Reynolds number. Journal of Tongji University (Natural Science), Vol. 36, No. 2 (2008), pp.161-165.
Google Scholar
[22]
Fang Ping-zhi, Gu Ming: Numerical simulation for vortex-induced vibration of circular cylinder with two degree of freedoms. Journal of Tongji University (Natural Science), Vol. 36, No. 3 (2008), pp.295-298.
Google Scholar
[23]
Fang Ping-zhi, Gu Ming, Tan Jian-guo: Study on vortex induced vibration for typical cylinders using numerical method. Journal of Tongji University (Natural Science), Vol. 37 No. 7 (2009), pp.862-865.
Google Scholar
[24]
Zhao Peng-liang, Wang Jia-song, Jiang Shi-quan, Xu Liang-bin: Numerical simulation of fluid structural interaction for vortex-induced vibration of risers. Ocean Technology, Vol. 29, No. 3 (2010), pp.73-77.
Google Scholar
[25]
C. Evangelinos, D. Lucor And G.E. Karniadakis: DNS-derived force distribution on flexible cylinders subjected to vortex-induced vibration. Journal of Fluids and Structures, Vol. 14 (2000), pp.429-440.
DOI: 10.1006/jfls.1999.0278
Google Scholar
[26]
Lucor, D., Foo, J., Karniadakis, G.E.: Correlation length and force phasing of a rigid cylinder subject to VIV. Fluid Mechanics and Its Applications, Vol. 75(2004), pp.187-199.
DOI: 10.1007/978-94-007-0995-9_13
Google Scholar
[27]
S. Dong, G.E. Karniadakis: DNS of flow past a stationary and oscillating cylinder at Re=10000. Journal of Fluids and Structures, Vol. 20 (2005), pp.519-531.
DOI: 10.1016/j.jfluidstructs.2005.02.004
Google Scholar
[28]
Jianfeng Zhang and Charles Dalton: Interaction of vortex-induced vibrations of a circular cylinder and a steady approach flow at a Reynolds number of 13000. Computers & Fluids, Vol. 25, No. 3 (1996), pp.283-294.
DOI: 10.1016/0045-7930(95)00040-2
Google Scholar
[29]
Lu X, Dalton C, Zhang J: Application of large eddy simulation to an oscillating flow past circular cylinder. ASME Journal of Fluids Engineering, Vol. 119 (1997), pp.519-525.
DOI: 10.1115/1.2819275
Google Scholar
[30]
Al-Jamal H, Dalton C: Vortex induced vibrations using large eddy simulation at a moderate Reynolds number. Journal of Fluids and Structures, Vol. 18 (2004), pp.73-92.
DOI: 10.1016/j.jfluidstructs.2003.10.005
Google Scholar