[1]
J. Lutcha, J. Nemcansky, Performance improvement of tubular heat exchangers by helical baffles, Chemical engineering research & design, 68 (1990) 263-270.
Google Scholar
[2]
D. Kral, P. Stehlik, H. Van Der Ploeg, B.I. Master, Helical baffles in shell-and-tube heat exchangers, Part I: Experimental verification, Heat Transfer Engineering, 17 (1996) 93-101.
DOI: 10.1080/01457639608939868
Google Scholar
[3]
B. Peng, Q. Wang, C. Zhang, G. Xie, L. Luo, Q. Chen, M. Zeng, An experimental study of shell-and-tube heat exchangers with continuous helical baffles, Journal of Heat Transfer, 129 (2007) 1425.
DOI: 10.1115/1.2754878
Google Scholar
[4]
Y.G. Lei, Y.L. He, R. Li, Y.F. Gao, Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles, Chemical Engineering and Processing, 47 (2008) 2336-2345.
DOI: 10.1016/j.cep.2008.01.012
Google Scholar
[5]
J.F. Zhang, B. Li, W.J. Huang, Y.G. Lei, Y.L. He, W.Q. Tao, Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles, Chemical Engineering Science, 64 (2009).
DOI: 10.1016/j.ces.2008.12.018
Google Scholar
[6]
G. Chen, Q. Wang, Experimental and Numerical Studies of Shell-and-Tube Heat Exchangers With Helical Baffles, in, ASME, (2009).
Google Scholar
[7]
G. Diaz, M. Sen, K. Yang, R.L. McClain, Simulation of heat exchanger performance by artificial neural networks, Hvac&R Research, 5 (1999) 195-208.
DOI: 10.1080/10789669.1999.10391233
Google Scholar
[8]
A. Pacheco-Vega, G. D¨ªaz, M. Sen, K. Yang, R.L. McClain, Heat rate predictions in humid air-water heat exchangers using correlations and neural networks, Journal of Heat Transfer, 123 (2001) 348.
DOI: 10.1115/1.1351167
Google Scholar
[9]
C. Shen, G.Y. Cao, X.J. Zhu, Nonlinear modeling of MCFC stack based on RBF neural networks identification, Simulation Modelling Practice and Theory, 10 (2002) 109-119.
DOI: 10.1016/s1569-190x(02)00064-3
Google Scholar
[10]
A. Garg, P. Sastry, M. Pandey, U. Dixit, S. Gupta, Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor, Nuclear engineering and design, 237 (2007) 230-239.
DOI: 10.1016/j.nucengdes.2006.06.008
Google Scholar
[11]
G.N. Xie, Q.W. Wang, M. Zeng, L.Q. Luo, Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach, Applied Thermal Engineering, 27 (2007) 1096-1104.
DOI: 10.1016/j.applthermaleng.2006.07.036
Google Scholar
[12]
N. Vaziri, A. Hojabri, A. Erfani, M. Monsefi, B. Nilforooshan, Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study, Nuclear engineering and design, 237 (2007) 377-385.
DOI: 10.1016/j.nucengdes.2006.05.005
Google Scholar
[13]
G. Xie, B. Sunden, Q. Wang, L. Tang, Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks, International Journal of Heat and Mass Transfer, 52 (2009).
DOI: 10.1016/j.ijheatmasstransfer.2008.10.036
Google Scholar