Research of Construction Schedule Optimization using Particle Swarm Optimization

Article Preview

Abstract:

The particle swarm optimization (PSO)-based approach to resolve the resource-constrained project scheduling problem with the objective of minimizing project duration is introduced in this paper. Computational analyses are provided so as to investigate the performance of the PSO-based approach for the resource-constrained project scheduling problem. The results shows that it is feasible to apply PSO to construction schedule optimization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 452-453)

Pages:

441-445

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Morse,L., and Whitehouse,G. (1988). A study of combining heuristics for scheduling projects with limited multiple resources., Comp. and Industrial Engrg., 15(1-4): 153-161.

DOI: 10.1016/0360-8352(88)90078-2

Google Scholar

[2] Boctor, F.F. (1990) Some efficient multi-heuristic procedures for resource-constrained project scheduling., Eur. J. Operational Res, 9: 3-13.

DOI: 10.1016/0377-2217(90)90116-s

Google Scholar

[3] Harris, R.B. (1990). Packing method for resource leveling(PACK)., J. Constr. Engrg. and Mamt., ASCE, 116(2): 331-350.

DOI: 10.1061/(asce)0733-9364(1990)116:2(331)

Google Scholar

[4] Padilla, E.M., and Carr, R.I. (1991). Resource strategies for dynamic project management., J. Constr. Engrg. and Mamt., ASCE, 117(2): 279-293.

Google Scholar

[5] Seibert, J.E., and Evans, G.W. (1991). Time-constrained resource leveling., J. Constr. Engrg. and Mamt., ASCE, 117(3): 503-520.

DOI: 10.1061/(asce)0733-9364(1991)117:3(503)

Google Scholar

[6] Karaa, F.A., and Nasr, A.Y. (1986). Resource management in construction., J. Constr. Engrg. and Mamt., ASCE, 112(3): 346-357.

Google Scholar

[7] Easa, S.M. (1989). Resource leveling in construction by optimization., J. Constr. Engrg. and Mamt., ASCE, 115(2): 302-316.

Google Scholar

[8] Ramlogan, R.N., and Goulter, I.C. (1989). Mixed integer model for resource allocation in project management., J. Engrg. Optimization. U.K., 15: 97-111.

DOI: 10.1080/03052158908941145

Google Scholar

[9] Chan, W., Chua, D., and Kannan, G. (1996). Construction resource scheduling with genetic algorithm., Journal of Construction Enginerring and Management. 112(2): 125-132.

Google Scholar

[10] Toklu, Y.C. (2002). Application of genetic algorithms to construction scheduling with or without resource constraints., Can. J. Civ. Eng. 29: 421-429.

DOI: 10.1139/l02-034

Google Scholar

[11] Daisy,.X.M., S. Thomas Ng, and Mohan, M.K. (2004). Applying a genetic algorithm-based multiobjective approach for time-cost optimization., Journal of Construction Enginerring and Management. 130(2): 168-176.

DOI: 10.1061/(asce)0733-9364(2004)130:2(168)

Google Scholar

[12] Savin, D., Alkass, S., and Fazio, P. (1998). Calculating weight matrix of neural network for resource leveling., J. Comp. in Civ. Engrg. ASCE. 12(4): 241-248.

DOI: 10.1061/(asce)0887-3801(1998)12:4(241)

Google Scholar

[13] Kennedy J, Eberhart R C. (1997). A discrete Binary Version of the Particle Swarm Algorithm., In: Proc. 1997 Conf. On System, Man, and Cybernetics. Piscataway, NJ: IEEE Service Center, 4104-4109.

DOI: 10.1109/icsmc.1997.637339

Google Scholar