[1]
Paakki Jouni, Janne Huiskonen, Timo Pirttla: Improving global spare parts distribution chain performance through part categorization: A case study. Int. J. Production Economics, Vol. 133. (2011), pp.164-171.
DOI: 10.1016/j.ijpe.2010.12.025
Google Scholar
[2]
Dickie HF: ABC inventory analysis shoots for dollars not pennies. Factory Management and Maintenance, Vol. 109 (1951), p.92–4.
Google Scholar
[3]
Ramanathan R: ABC inventory classification with multiple-criteria using weighted linear optimization. Computers and Operations Research, Vol. 33 (2006), p.695–700.
DOI: 10.1016/j.cor.2004.07.014
Google Scholar
[4]
Jin-Xiao Chen: Peer-estimation for multiple criteria ABC inventory classification. Computer & Operations Research, Vol. 2011(38), pp.1784-1791.
DOI: 10.1016/j.cor.2011.02.015
Google Scholar
[5]
Guvenir HA, Erel E: Multi-criteria inventory classification using genetic algorithm. European Journal of Operational Research, Vol. 105 (1998), p.29–37.
DOI: 10.1016/s0377-2217(97)00039-8
Google Scholar
[6]
Partovi FY, Anandarajan M: Classifying inventory using an artificial neural network approach. Computer and Industrial Engineering, Vol. 41 (2002): 389–404.
DOI: 10.1016/s0360-8352(01)00064-x
Google Scholar
[7]
Ernst R, Cohen MA: Operations related groups (ORGs): a clustering procedure for production/inventory systems. Journal of Operations Management, Vol. 9 (1990), p.574–98.
DOI: 10.1016/0272-6963(90)90010-b
Google Scholar
[8]
Cakir O, Canbolat MS: A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, Vol. 35(2008), p.1367–78.
DOI: 10.1016/j.eswa.2007.08.041
Google Scholar
[9]
Tsai CY, Yeh SW: A multiple objective particle swarm optimization approach for inventory classification. International Journal of Production Economics, Vol. 114 (2008), p.656–66.
DOI: 10.1016/j.ijpe.2008.02.017
Google Scholar
[10]
Vapnik VN, GolowichSE, Smola AJ: Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems , Vol. 9 (1996); pp.281-285.
Google Scholar
[11]
Vapnik W: The nature of statistical learning theory. New York: Springer(1995).
Google Scholar
[12]
L.P. Wang: Support vector machines: theory and application, Springer, Berlin(2005).
Google Scholar
[13]
P.H. Chen, C.J. Lin: A tutorial on n-support vector machines, Applied Stochastic Models in Business and Industry, (2005).
Google Scholar
[14]
J. Lee, D. Lee: An improved cluster labeling method for support vector clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence(2005), p.461 – 464.
DOI: 10.1109/tpami.2005.47
Google Scholar
[15]
Lei Sun, Hongfu Zuo: Multi-echelon inventory optimal model of civil aircraft spare parts. Chinese Control and Decision Conference(2010), pp.824-827.
DOI: 10.1109/ccdc.2010.5498111
Google Scholar
[16]
Cedric Lardeux, etc: Use of the SVM classification with polarimetric SAR data for land use cartography. IEEE (2006), 497-500.
DOI: 10.1109/igarss.2006.131
Google Scholar
[17]
C. J. Burges: A tutorial on support vector machines for pattern recognition, in Data mining and knowledge discovery, U. Fayyad, Ed. Kluwer Academic(1998), pp.1-43.
Google Scholar