[1]
A.D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology, and . Blackwell Scientific Publications, Oxford (1997)., Blackwell Scientific Publications, Oxford, (1997).
Google Scholar
[2]
T. Hofmann and A. Wendelborn, Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam, Environmental Science and Pollution Research, vol. 14, pp.223-224, (2007).
DOI: 10.1065/espr2007.02.389
Google Scholar
[3]
M. Hassellöv and F. von der Kammer, Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems, Elements, vol. 4, pp.401-406, (2008).
DOI: 10.2113/gselements.4.6.401
Google Scholar
[4]
J.K. Schijven and S.M. Hassanizadeh, Removal of viruses bysoil passage: Overview of modeling, processes, and parameters., Crit. Rev. Environ. Sci. Technol., vol. 30, pp.49-127, (2000).
DOI: 10.1080/10643380091184174
Google Scholar
[5]
C.N. Mueller and B. Nowack, Exposure modeling of engineered nanoparticles in the environment, Environmental Science Technology, vol. 42, pp.4447-4453, (2008).
DOI: 10.1021/es7029637
Google Scholar
[6]
A. Franchi and R. O M elia Charles, "Effects of Natural Organic Matter and Solution Chemistry on the Deposition and Reentrainment of Colloids in Porous Media, Environmental Science Technology, vol. 37, pp.1122-1129, (2003).
DOI: 10.1021/es015566h
Google Scholar
[7]
J.A. Pelley and N. Tufenkji, Effect of particle size and natural organic matter on the migration of nanoand microscale latex particles in saturated porous media, Journal of Colloid and Interface Science, vol. 321, pp.74-83, (2008).
DOI: 10.1016/j.jcis.2008.01.046
Google Scholar
[8]
M.L. Weber-Shirk, Enhancing slow sand filter performance with an acid-soluble seston extract, Water Research, vol. 36, pp.4753-4756, (2002).
DOI: 10.1016/s0043-1354(02)00212-9
Google Scholar
[9]
B. Gu, T.L. Mehlhorn, L. Liang and J.F. McCarthy, Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption, Geochimica Et Cosmochimica Acta, vol. 60, (1996).
DOI: 10.1016/0016-7037(96)00059-2
Google Scholar
[10]
M. Ochs, B. Cosovic and W. Stumm, Coordinative and hydrophobic interactions of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces, Geochim. Cosmochim. Acta, vol. 58, pp.639-650, (1994).
DOI: 10.1016/0016-7037(94)90494-4
Google Scholar
[11]
G. Tchobanoglous, L.F. Burton and D.H. Stensel Eds., Wastewater engineering: treatment and reuse, McGraw-Hill Higher Education, (2003).
Google Scholar
[12]
X. Yang, R. Flynn, F. von der Kammer and T. Hofmann, Quantifying the influence of humic acid adsorption on colloidal colloid deposition onto iron-oxide-coated sand, Environmental Pollution, vol. 158, pp.3498-3506, 12. (2010).
DOI: 10.1016/j.envpol.2010.03.011
Google Scholar
[13]
W.B. Arbuckle and Y. Ho, Adsorber Column Diameter: Particle Diameter Ratio Requirements, Research Journal of the Water Pollution Control Federation, vol. 62, pp.88-90, (1990).
Google Scholar
[14]
R. Kretzschmar, P.R. Wayne and A. Aziz, Influence of natural organic matter on colloid transport through saprolite, Water Resources Research, vol. 31, pp.435-445, (1995).
DOI: 10.1029/94wr02676
Google Scholar
[15]
R.P. Johnson, N. Sun and M. Elimelech, Colloid transport in geochemically heterogeneous porous media: modeling and measurements, Environmental Science Technology, vol. 30, pp.3284-3293, (1996).
DOI: 10.1021/es960053+
Google Scholar
[16]
C.R. O'Melia and W. Ali, The role of retained particles in deep bed filtration, Progress in Water Technology, vol. 10, pp.167-182, (1978).
Google Scholar