Preparation and Characterization of Nd-Doped Ti/SnO2-Sb2O5 Electro-Catalytic Electrodes Used for Reactive Brilliant Red X-3B Wastewater Treatment

Article Preview

Abstract:

The best catalytic capacity of Nd-doped Ti/SnO2-Sb2O5 electrodes was obtained by sol-gel preparation. Nd-doped Ti/SnO2-Sb2O5 coating was characterized using technique such as scanning electron microscopy (SEM), and X-ray diffraction (XRD). Nd-doped electrode fragments looks smaller, more compact and more uniform than undoped electrode through SEM. The crystal cell’s average diameter of Nd-doped electrodes was 3.48nm through XRD. BOD5/COD of Reactive Brilliant Red X-3B increased 200% under optimum conditions after 1h electrolysis. Instantaneous current efficiency (ICE) was 51.15 % in first 40 min, 35.73 % in first 60 min. In the first 40 minutes of electrolysis process, COD of Reactive Brilliant Red X-3B changes conformed to the pseudo first-order kinetic equation. Electrical Properties Tests showed that the oxygen evolution potential values of Nd-doped electrodes were higher than the undoped electrodes in various media.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

1356-1360

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Comninellis, C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

Google Scholar

[2] R. Kötz, S. Stucki, B. Carcer, J. Appl. Electrochem. 21 (1991) 14.

Google Scholar

[3] C. Comninellis, Electrochim. Acta 39 (1994) 1857-1862.

Google Scholar

[4] L.C. Chiang, J.E. Chang, T.C. Wen, Water Res. 29 (1995) 671-678.

Google Scholar

[5] G.H. Che, Sep. Purif. Technol. 38 (2004) 11.

Google Scholar

[6] S.S. Vaghela, A. D. Jethva, Bhavesh B. Mehta, Environ. Sci. Technol. 39 (2005) 2848-2855.

Google Scholar

[7] G. R. P. Malpass, D. W. Miwa, S. A. S. Machado, J. Haz. Mats. 137 B (2006) 565-572.

Google Scholar

[8] E. Arevalo, W. Calmano, J. Haz. Mats. 146 (2007) 540-545.

Google Scholar

[9] R. Kötz, S. Stucki, B. Carcer, J. Appl. Electrochem. 23 (1993) 108.

Google Scholar

[10] B.C. Lozano, C. Comninellis, A.D. Battisti, J. Appl. Electrochem. 27 (1997) 970.

Google Scholar

[11] X.M. Chen, F.R. Gao, G.H. Chen, J. Appl. Electrochem. 35 (2005) 185.

Google Scholar

[12] S. Stucki, R. Kötz, B. Carcer, J. Appl. Electrochem 21 (1991) 99-104.

Google Scholar

[13] Y.J. Feng, X.Y. Li, Water Res. 37 (2003) 2399–2407.

Google Scholar

[14] H.Y. Ding, Y.J. Feng, J.F. Liu, Mater. Lett. 61 (2007) 4920-4923.

Google Scholar

[15] B. Wang, W.P. Kong, H.Z. Ma, J. Haz. Mats. 146 (2007) 295–301.

Google Scholar

[16] H. Yong Y.H. Cui Y.J. Feng, J.F. Liu W.M. Cai, Mater. Sci. Technol. 12 (2004) 230–233.

Google Scholar

[17] X.M. Chen, G.H. Chen, Electrochim. Acta 50 (2005) 4155–4159.

Google Scholar

[18] Y.J. Feng, Y.H. Cui, B. Logan, Z.Q. Liu, Chemosphere 70 (2008) 1629-1636.

Google Scholar

[19] B. Adams, M. Tian, A. C, Electrochim. Acta 54 (2009) 1491-1498.

Google Scholar

[20] C. Borras, T. Laredo, J. Mostany, B.R. Scharifker, Electrochim. Acta 49 (2004) 641.

Google Scholar

[21] M. Zhou, Q. Dai, L. Lei, C. Ma, D. Wang, Environ. Sci. Technol. 39 (2005)363.

Google Scholar

[22] M. Tian, L. Bakovic, A. Chen, Electrochim. Acta 52 (2007) 6517.

Google Scholar

[23] H. Liu, Y. Liu, C. Zhang, J. Appl. Electrochem. 38 (2008) 101.

Google Scholar

[24] Z. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, C.C. Liu, Sensor. Actuat. B 52 (1998) 188.

Google Scholar

[25] M. Panizza, C. Bocca, G. Cerisola, Water Res. 34 (9) (2005) 2601–2605.

Google Scholar