Research on the Migration Characteristics of Organophosphorus in Clay

Article Preview

Abstract:

In order to study the migration characters of organophosphorus in clay, experiment was designed to simulate the process of organophosphor leakage permeating the aquitard, searching the migration characters of organophosphorus in clay with different pH. It is shown that the ability of migration of organophosphor leakage permeating the cohesive soil fall with increase of pH between7.5 and 9.5, and the extent of mineralization for organophosphor in clay rise with increase of pH.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

1410-1413

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Manuel, A. E., Eugenio, L. P., Elena M. C., Jesu´s S. G., Mejuto, J. C., Luis, G. R., 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment , 123: 247–260.

DOI: 10.1016/j.agee.2007.07.011

Google Scholar

[2] Warren, N., Allan, I.J., Carter, J. E., House, W. A., Parker, A., 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Applied Geochemistry, 18: 159–194.

DOI: 10.1016/s0883-2927(02)00159-2

Google Scholar

[3] Hantush, M.M., Marin´o, M.A., Islam, M.R. 2000. Models for leaching of pesticides in soils and groundwater. Journal of Hydrology, 227: 66–83.

DOI: 10.1016/s0022-1694(99)00166-3

Google Scholar

[4] Worrall, F., Thomsen, M., 2004. Quantum vs. topological descriptors in the development of molecular models of groundwater pollution by pesticides. Chemosphere, 54: 585–596.

DOI: 10.1016/s0045-6535(03)00705-7

Google Scholar

[5] Posen, P., Lovett, A., Hiscock, K., Evers, S., Ward, R., Reid, B., 2006. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment. Science of the Total Environment, 367: 641–652.

DOI: 10.1016/j.scitotenv.2006.02.024

Google Scholar

[6] Worrall, F., Kolpinb, D.W., 2004. Aquifer vulnerability to pesticide pollution—combining soil, land-use and aquifer properties with molecular descriptors. Journal of Hydrology, 293: 191–204.

DOI: 10.1016/j.jhydrol.2004.01.013

Google Scholar

[7] Oldal, B., Maloschik, E., Uzinger, N., Anton, A. Székács, A., 2006. Pesticide residues in Hungarian soils. Geoderma, 135: 163–178.

DOI: 10.1016/j.geoderma.2005.11.011

Google Scholar

[8] Bloomfield, J.P., Williams, R.J., Gooddy, D.C., Cape, J.N. Guha, P., 2006. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 369 : 163–177.

DOI: 10.1016/j.scitotenv.2006.05.019

Google Scholar

[9] Flores-Ce´spedes, F., Ferna´ndez-Pe´rez, M., Villafranca-Sa´nchez, M. Gonza´lez-Pradas, E., 2006. Cosorption study of organic pollutants and dissolved organic matter in a soil. Environmental Pollution, 142: 449-456.

DOI: 10.1016/j.envpol.2005.10.019

Google Scholar

[10] Hildebrandt, A., Guillamo´n, M., Lacorte, S., Tauler, R., Barcelo, D., 2008. Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research, 42: 3315–3326.

DOI: 10.1016/j.watres.2008.04.009

Google Scholar

[11] Polkowska, Z., Kot, A., Wiergowski, M., Wolska, L., Wolowska, K., NamiesHnik, J., 2000. Organic pollutants in precipitation: determination of pesticides and polycyclic aromatic hydrocarbons in GdanH sk, Poland. Atmospheric Environment, 34: 1233-1245.

DOI: 10.1016/s1352-2310(99)00180-6

Google Scholar

[12] Li bin, Wang zhichun, Chi chunming, 2006. Parameters and Characteristics of Alkalization of Sodic Soil in Da'an City. Journal of Ecology and Rural Environment, 22(1): 20-23. (in chinese).

Google Scholar