Photoluminescence and Transparent Conductive Properties of the Al and Sb Codoped ZnO Thin Films Annealed in Different Atmospheres

Article Preview

Abstract:

Al and Sb codoped ZnO thin films were prepared through a sol-gel spin coating method on glass substrates and annealed in different atmospheres. The XRD results show that the films have hexagonal wurtzite ZnO structure and SEM results reveal that the films annealed in hydrogen consist of hexagonal nanorods with diameters of 84 nm and lengths of 422 nm, however the films annealed in other atmospheres without nanorods. The photoluminescence (PL) spectrum shows that the emission peaks of the films are mostly at 390 and 460 nm, and the film annealed in hydrogen has the strongest intensity of peak at 390 nm and the film annealed in air has the strongest intensity of peak at 460 nm. The electrical properties show that the films annealed in hydrogen have a lowest resistivity of 1.02×10-3 Ω•cm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

42-45

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Water, T. H. Fang, L. W. Ji and C. C. Lee, Mat. Sci. Eng. B 158 (2009) 75.

Google Scholar

[2] B. Y. Geng, G. Z. Wang, Z. Jiang, T. et al., Appl. Phys. Lett. 82 (2003) 4791.

Google Scholar

[3] M. T. Bjork, B. J. Ohlsson, T. Sass, et al., Appl. Phys. Lett. 80 (2002) 1058.

Google Scholar

[4] Chun Yang, Yu Yi, and Y. R. Li, Surf. Rev. Lett. 13 (2006) 27.

Google Scholar

[5] X. M. Duan, C. Stampfl, M. M. M. Bilek, and D. R. McKenzie, Phys. Rev. B 79 (2009) 235208.

Google Scholar

[6] L. H. van, J. Ding, M. H. Hong, Z. C. Fan, and L. Wang, Surf. Rev. Lett. 15 (2008) 81.

Google Scholar

[7] T. Voss, C. Bekeny, J. Gutowski, et al., J. Appl. Phys. 106 (2009) 054304.

Google Scholar

[8] V. A. L. Roy, A. B. Djurišić, W. K. Chan, et al., J. Appl. Phys. 83 (2003) 141.

Google Scholar

[9] M. A. M. Al-Suleiman, A. Bakin, and A. Waag, J. Appl. Phys. 106 (2009) 063111.

Google Scholar

[10] M. Guo, P. Diao, X. D. Wang, and S. M. Cai, J. Solid state Chem. 178 (2005) 3210.

Google Scholar

[11] T. Yamamoto, Thin Solid Films 420 (2002) 100.

Google Scholar

[12] K. P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, et al., J. Alloys Compd. 478 (2009) 54.

Google Scholar

[13] G. Heiland, E. Mollwo, and F. Stockmann, Solid State Phys. 8 (1959) 191.

Google Scholar

[14] A. Poppl, and G. Volkel, Phys. Status Solidi A 125 (1991) 571.

Google Scholar

[15] F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72 (2005) 085206.

Google Scholar

[16] C. Y. Tsay, H. C. Cheng, Y. T. Tung, et al., Thin Solid Films 517 (2008) 1036.

Google Scholar

[17] H. P. Yang, A Study of P-type Zinc Oxide Thin Flims, (Montreal, Canada: Mcgill University), (2006) p.40.

Google Scholar

[18] M. J. Lee, J. Lim, J. Bang, W. Lee, and J. M. Myoung, Appl. Surf. Sci. 255 (2008) 3195.

Google Scholar

[19] B. Y. Oh, M. C. Jeong, and J. M. Myoung, Appl. Surf. Sci. 253 (2007) 7157.

Google Scholar