Photoluminescence and Transparent Conductive Properties of the Al and Sb Codoped ZnO Thin Films Annealed in Different Atmospheres

Abstract:

Article Preview

Al and Sb codoped ZnO thin films were prepared through a sol-gel spin coating method on glass substrates and annealed in different atmospheres. The XRD results show that the films have hexagonal wurtzite ZnO structure and SEM results reveal that the films annealed in hydrogen consist of hexagonal nanorods with diameters of 84 nm and lengths of 422 nm, however the films annealed in other atmospheres without nanorods. The photoluminescence (PL) spectrum shows that the emission peaks of the films are mostly at 390 and 460 nm, and the film annealed in hydrogen has the strongest intensity of peak at 390 nm and the film annealed in air has the strongest intensity of peak at 460 nm. The electrical properties show that the films annealed in hydrogen have a lowest resistivity of 1.02×10-3 Ω•cm.

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Edited by:

Sally Gao

Pages:

42-45

DOI:

10.4028/www.scientific.net/AMR.457-458.42

Citation:

W. W. Zhong et al., "Photoluminescence and Transparent Conductive Properties of the Al and Sb Codoped ZnO Thin Films Annealed in Different Atmospheres", Advanced Materials Research, Vols. 457-458, pp. 42-45, 2012

Online since:

January 2012

Export:

Price:

$35.00

[1] W. Water, T. H. Fang, L. W. Ji and C. C. Lee, Mat. Sci. Eng. B 158 (2009) 75.

[2] B. Y. Geng, G. Z. Wang, Z. Jiang, T. et al., Appl. Phys. Lett. 82 (2003) 4791.

[3] M. T. Bjork, B. J. Ohlsson, T. Sass, et al., Appl. Phys. Lett. 80 (2002) 1058.

[4] Chun Yang, Yu Yi, and Y. R. Li, Surf. Rev. Lett. 13 (2006) 27.

[5] X. M. Duan, C. Stampfl, M. M. M. Bilek, and D. R. McKenzie, Phys. Rev. B 79 (2009) 235208.

[6] L. H. van, J. Ding, M. H. Hong, Z. C. Fan, and L. Wang, Surf. Rev. Lett. 15 (2008) 81.

[7] T. Voss, C. Bekeny, J. Gutowski, et al., J. Appl. Phys. 106 (2009) 054304.

[8] V. A. L. Roy, A. B. Djurišić, W. K. Chan, et al., J. Appl. Phys. 83 (2003) 141.

[9] M. A. M. Al-Suleiman, A. Bakin, and A. Waag, J. Appl. Phys. 106 (2009) 063111.

[10] M. Guo, P. Diao, X. D. Wang, and S. M. Cai, J. Solid state Chem. 178 (2005) 3210.

[11] T. Yamamoto, Thin Solid Films 420 (2002) 100.

[12] K. P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, et al., J. Alloys Compd. 478 (2009) 54.

[13] G. Heiland, E. Mollwo, and F. Stockmann, Solid State Phys. 8 (1959) 191.

[14] A. Poppl, and G. Volkel, Phys. Status Solidi A 125 (1991) 571.

[15] F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72 (2005) 085206.

[16] C. Y. Tsay, H. C. Cheng, Y. T. Tung, et al., Thin Solid Films 517 (2008) 1036.

[17] H. P. Yang, A Study of P-type Zinc Oxide Thin Flims, (Montreal, Canada: Mcgill University), (2006) p.40.

[18] M. J. Lee, J. Lim, J. Bang, W. Lee, and J. M. Myoung, Appl. Surf. Sci. 255 (2008) 3195.

[19] B. Y. Oh, M. C. Jeong, and J. M. Myoung, Appl. Surf. Sci. 253 (2007) 7157.

In order to see related information, you need to Login.