[1]
V. Namias. The Fractional Order Fourier Transform and its Application to Quantum Mechanics. IMA J Appl Math (1980) 25 (3): 241-265.
DOI: 10.1093/imamat/25.3.241
Google Scholar
[2]
Almeida,L. B, The fractional Fourier transform and time-frequency representations, Signal Processing, IEEE Transactions on, 42(11), 1994, 3084 – 3091.
DOI: 10.1109/78.330368
Google Scholar
[3]
H.M. Ozaktas, D. Mendlovic. Fourier transforms of fractional order and their optical interpretation. Optics Communications, 101, 1993, 163-169.
DOI: 10.1016/0030-4018(93)90359-d
Google Scholar
[4]
Pierre Pellat-Finet, Fresnel diffraction and the fractional-order Fourier transform, Opt. Lett. 19, 1388-1390 (1994).
DOI: 10.1364/ol.19.001388
Google Scholar
[5]
H.M. Ozaktas, M. A. Kutay, D. Mendlovic. Introduction to the Fractional Fourier Transform and Its Applications. Advances in Imaging and Electron Physics, 106, 1999, 239-291.
DOI: 10.1016/s1076-5670(08)70272-6
Google Scholar
[6]
H. M Ozaktas,Z. Zalevsky M. A Kutay, Fractional Fourier transform with applications in optics and signal processing, Wely, (2001).
Google Scholar
[7]
S. Das. Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg, (2008).
Google Scholar
[8]
G. Jumarie. On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett., 18, 2005, 739–748.
Google Scholar
[9]
G. Jumarie. Laplace's Transform of Fractional Order via the Mittag-Leffler Function and Modified Riemann-Liouville Derivative. Appl. Math. Lett., 22, 2009, 1659-1664.
DOI: 10.1016/j.aml.2009.05.011
Google Scholar
[10]
G. Jumarie. Probability Calculus of Fractional Order and Fractional Taylor's Series Application to Fokker–Planck Equation and Information of Non-random Functions. Chaos, Solitons & Fractals. 40(3), 2009, 1428-1448.
DOI: 10.1016/j.chaos.2007.09.028
Google Scholar
[11]
X. Yang, Z. Kang, C. Liu. Local fractional Fourier's transform based on the local fractional calculus. In: The 2010 ICECE 2010, 1242–1245. IEEE Computer Society, (2010).
DOI: 10.1109/icece.2010.1416
Google Scholar
[12]
X. Yang, Local Fractional Integral Transforms. Progress in Nonlinear Science, 4, 2011, 1-225.
Google Scholar
[13]
X. Yang, Local Fractional Functional Analysis and Its Applications. Asian Academic publisher Limited, Hong Kong, China, (2011).
Google Scholar